已知:如圖,在△ABC中,D、E分別是AB、AC的中點,連接DE.
(1)過E點作EF平行于AB交BC于F(保留作圖痕跡);并說明你作圖的正確性.
(2)求證:四邊形DBFE是平行四邊形.

(1)解:
∵E是AC的中點,F(xiàn)是BC的中點,
∴EF∥AC.

(2)證明;∵D是AB的中點,E是AC的中點,
∴DE∥BC,
又∵EF∥AB,
∴四邊形DBFE是平行四邊形.
分析:(1)取BC的中點F,連接EF,EF∥AB,根據(jù)三角形中位線定理可證明.
(2)根據(jù)兩組對邊平行的四邊形是平行四邊形可進行證明.
點評:本題考查平行四邊形的判定,三角形的中位線定理以及基本作圖.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案