【題目】如圖,已知EFG≌△NMH, FM是對應(yīng)角.

1)寫出相等的線段與相等的角;

2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MNHG的長度.

【答案】(1EF=NMEG=NH,FG=MH,F=M, E=N, EGF=NHM 2MN=2.1cm,HG=2.2cm.

【解析】

試題分析:1因?yàn)?/span>EFG≌△NMH,故有全等三角形的對應(yīng)邊和對應(yīng)角相等. 2)因?yàn)?/span>EFG≌△NMH,故EF=NM,即可求出各自的長度.

試題解析:(1EFG≌△NMHFM是對應(yīng)角 EFGNMH中,有EF=NM,EG=NH,FG=MH

F=M, E=N, EGF=NHM ;(2由(1)可知,EF=NM,EF=2.1cm MN=2.1 MH=FG=3.3 FH=1.1 =3.3-1.1=2.2cm.

考點(diǎn):全等三角形的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件夾克衫先按成本提高50%標(biāo)價,再以8折(標(biāo)價的80%)出售,結(jié)果獲利28元,若設(shè)這件夾克衫的成本是x元,根據(jù)題意,可得到的方程是( )
A.(1+50%)x×80%=x﹣28
B.(1+50%)x×80%=x+28
C.(1+50%x)×80%=x﹣28
D.(1﹣50%x)×80%=x+28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠α=36°14′25″,則∠α的余角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王阿姨購買了25000元一年期的債券,一年后扣除20%的利息稅之后得到本息和為26000元,設(shè)這種債券的年利率為x.列方程為( )
A.25000x×80%=26000﹣25000
B.25000x=26000﹣25000
C.25000(1+x)=26000﹣25000
D.25000x+25000=26000(1+20%)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,AB=8cm,AD=4cm,將△ABC沿著對角線AC折疊,使點(diǎn)B落在E處,AECDF點(diǎn).

(1)試說明AF=CF;

(2)求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形, 在同一條直線上,連結(jié)

(1)請找出圖2中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的字母);

(2)證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個數(shù)的絕對值是2,則這個數(shù)是(   )

A. 4 B. 2 C. ﹣2 D. ±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級有7名同學(xué)的體能測試成績(單位:分)如下:50,48,47,50,48,49,48.這組數(shù)據(jù)的眾數(shù)是______分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華在整理平行四邊形、矩形、菱形、正方形的性質(zhì)時,發(fā)現(xiàn)它們的對角線都具有同一性質(zhì)是( 。

A.互相平分B.相等

C.互相垂直D.平分一組對角

查看答案和解析>>

同步練習(xí)冊答案