求拋物線y=-(2x+1)(2x-5)的對稱軸和頂點(diǎn)坐標(biāo).

解 y=-(2x+1)(2x-5)=-(4x2-8x-5)=-4(x-1)2+9,
對稱軸為:直線x=1
頂點(diǎn)坐標(biāo)為:(1,9)
分析:首先轉(zhuǎn)化為二次函數(shù)的一般形式,然后配方后即可確定頂點(diǎn)坐標(biāo)和對稱軸.
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是首先轉(zhuǎn)化為二次函數(shù)的一般形式,然后配方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=-
23
x2+bx+c
與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸交于點(diǎn)C,且x1,x2是方程x2-2x-3=0的兩個(gè)根(x1<x2).
(1)求拋物線的解析式;
(2)過點(diǎn)A作AD∥CB交拋物線于點(diǎn)D,求四邊形ACBD的面積;
(3)如果P是線段AC上的一個(gè)動點(diǎn)(不與點(diǎn)A、C重合),過點(diǎn)P作平行于x軸的直線l交BC于點(diǎn)Q,那么在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河?xùn)|區(qū)一模)如圖,拋物線C:y=ax2+bx+3與x軸的兩個(gè)交點(diǎn)坐標(biāo)為A(-3,0),B(-1,0).
(Ⅰ)求拋物線C的解析式;
(Ⅱ)設(shè)拋物線C的頂點(diǎn)為M,直線y=-2x+9與y軸交于點(diǎn)E,交直線OM于點(diǎn)F.現(xiàn)保持拋物線C的形狀和開口方向,使頂點(diǎn)沿直線OM移動(O為坐標(biāo)原點(diǎn)).在平移過程中,當(dāng)拋物線與射線EF(含端點(diǎn)E、F)只有一個(gè)公共點(diǎn)時(shí),求它的頂點(diǎn)橫坐標(biāo)的值或取值范圍;
(Ⅲ)將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),過Q(0,3)作不平行于x軸的直線交拋物線于M,N兩點(diǎn).問在y軸的負(fù)半軸上是否存在點(diǎn)P,使△PMN的內(nèi)心在y軸上?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)稱為這兩個(gè)函數(shù)的“再生二次函數(shù)”,其中t是不為零的實(shí)數(shù),其圖象記作拋物線E.現(xiàn)有點(diǎn)A(2,0)和拋物線E上的點(diǎn)B(-1,n),請完成:
(1)當(dāng)t=2時(shí),求拋物線y=t(x2-3x+2)+(1-t)(-2x+4)的頂點(diǎn)坐標(biāo).
(2)判斷點(diǎn)A是否在拋物線E上,并求出n的值.
(3)通過(2)演算可知,對于t取任何不為零的實(shí)數(shù),拋物線E總過定點(diǎn),寫出定點(diǎn)坐標(biāo).
(4)二次函數(shù)y=-3x2+5x+2是二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4的一個(gè)“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求拋物線y=-(2x+1)(2x-5)的對稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+2x+3與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),且A在B的左邊,拋物線的頂點(diǎn)為D.
(1)求拋物線的頂點(diǎn)D的坐標(biāo)和拋物線的對稱軸;
(2)求點(diǎn)A,B,C三點(diǎn)坐標(biāo).并畫出此二次函數(shù)的大致圖象;
(3)根據(jù)圖象回答:當(dāng)x取何值,y>0;
(4)連接AC,CD,DB,求四邊形ABDC的面積.

查看答案和解析>>

同步練習(xí)冊答案