已知二次函數(shù)y=x2-6x+8.
(1)將y=x2-6x+8化成y=a(x-h)2+k的形式;
(2)當(dāng)0≤x≤4時(shí),y的最小值是
 
,最大值是
 
;
(3)當(dāng)y<0時(shí),寫(xiě)出x的取值范圍.
考點(diǎn):二次函數(shù)的三種形式,二次函數(shù)的最值
專題:
分析:(1)由于二次項(xiàng)系數(shù)是1,所以直接加上一次項(xiàng)系數(shù)的一半的平方來(lái)湊完全平方式,把一般式轉(zhuǎn)化為頂點(diǎn)式;
(2)根據(jù)二次函數(shù)的性質(zhì)結(jié)合自變量的取值范圍即可求解;
(3)先求出方程x2-6x+8=0的兩根,再根據(jù)二次函數(shù)的性質(zhì)即可求解.
解答:解:(1)y=x2-6x+8=(x2-6x+9)-9+8=(x-3)2-1; 

(2)∵拋物線y=x2-6x+8開(kāi)口向上,對(duì)稱軸為x=3,
∴當(dāng)0≤x≤4時(shí),x=3,y有最小值-1;x=0,y有最大值8;

(3)∵y=0時(shí),x2-6x+8=0,解得x=2或4,
∴當(dāng)y<0時(shí),x的取值范圍是2<x<4.
故答案為-1,8.
點(diǎn)評(píng):本題考查了二次函數(shù)解析式的三種形式,二次函數(shù)的性質(zhì)及最值的求法,難度適中.把一般式轉(zhuǎn)化為頂點(diǎn)式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x=-
1
2
時(shí),x3+4x2的值為(  )
A、
1
2
B、
3
4
C、-
1
2
D、
7
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知兩圓的半徑分別為2cm和4cm,它們的圓心距為6cm,則這兩個(gè)圓的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(-
3
4
)÷(+
4
3
)=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

單項(xiàng)式-
x3y
2
的系數(shù)是
 
,次數(shù)是
 
次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,AB=AC,∠BAC=40°,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)100°.得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△ABD≌△ACE;
(2)求證:四邊形ABEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于分式
x-a
3x-2
,當(dāng)x=a時(shí),( 。
A、分式無(wú)意義
B、分式值為0
C、若a=-
2
3
,分式無(wú)意義
D、若a≠
2
3
,分式值為0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列各式中,正確的是( 。
A、3a+b=3ab
B、2xy+3xy=6xy
C、-2(x-4)=-2x+4
D、3-2x=-(2x-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩地相距460千米,A、B兩車分別從兩地開(kāi)出,A車每小時(shí)行駛60千米,B車每小時(shí)行駛48千米.若兩車相向而行,A車提前1小時(shí)出發(fā),則B車出發(fā)后多少小時(shí)相遇?設(shè)B車出發(fā)后x小時(shí)相遇,則列方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案