【題目】如下圖所示,在中,,將繞點順時針旋轉(zhuǎn)度,得到,于點,分別交于點、,下列結(jié)論:

,,,.

其中一定正確的有(

A.①②④B.①③⑤C.②③⑤D.③④⑤

【答案】B

【解析】

利用旋轉(zhuǎn)的性質(zhì)得BA=BC=BA1=BC1,∠ABA1=CBC1,∠C=C1,則利用三角形的內(nèi)角和可得到∠CDF=C1BF=α,于是可對①進行判斷;再證明ABE≌△CBF得到BE=BF,所以A1E=CF,則可對③進行判斷;由于∠CDF=α,而∠C不一定等于α,則可對②進行判斷;然后證明A1BF≌△CBE,則可對④⑤進行判斷.

解:∵△ABC繞點B順時針旋轉(zhuǎn)α度,得到A1BC1,

BA=BC=BA1=BC1,∠ABA1=CBC1,∠C=C1

而∠CFD=C1FB,

∴∠CDF=C1BF=α,所以①正確;

∵∠A=A1=C1BA=BC1,∠ABE=C1BF

∴△ABE≌△CBF,

BE=BF,

A1E=CF,所以③正確;

∵∠CDF=α,而∠C不一定等于α,

DFFC不一定相等,所以②錯誤;

BA1=BC,∠A1BF=CBE,BF=BE
∴△A1BF≌△CBE,

A1F=CE,所以④錯誤,⑤正確.

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的三個頂點分別為,,

1)畫出關(guān)于點O成中心對稱的;

2)以點A為位似中心,將放大為原來的2倍,得到,請在第二象限內(nèi)畫出;

3)直接寫出以點,為頂點,以為一邊的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家銷售一款商品,進價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費5元,未來一個月30天計算,這款商品將開展每天降價1的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設第xx為整數(shù)的銷售量為y件.

直接寫出yx的函數(shù)關(guān)系式;

設第x天的利潤為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,如圖所示,并規(guī)定:顧客消費200元(含200元)以上,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準九折、八折、七折區(qū)域,顧客就可以獲得此項優(yōu)惠,如果指針恰好在分割線上時,則需重新轉(zhuǎn)動轉(zhuǎn)盤.

1)某顧客正好消費220元,他轉(zhuǎn)一次轉(zhuǎn)盤,他獲得九折、八折、七折優(yōu)惠的概率分別是多少?

2)某顧客消費中獲得了轉(zhuǎn)動一次轉(zhuǎn)盤的機會,實際付費168元,請問他消費所購物品的原價應為多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題9分)如圖,的直徑,上一點,連接.過點的切線,交的延長線于點,在上取一點,使,連接,交于點.請補全圖形并解決下面的問題:

1)求證:;

2)如果,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘輪船在A處測得燈塔P在船的北偏東30°方向,輪船沿著北偏東60°方向航行16km后到達B處,這時燈塔P在船的北偏西75°方向.則燈塔PB之間的距離等于___________km(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定:sin﹣x=﹣sinx,cos﹣x=cosxsinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣;

②sin75°=

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓練小組,他們?nèi)酥g進行互相傳球練習,籃球從一個人手中隨機傳到另外一個人手中計作傳球一次,共連續(xù)傳球三次.

1)若開始時籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是 

2)若開始時籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,EAB邊上一點,且∠A=EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=BEF,其中結(jié)論正確的個數(shù)是(  )

A.3

B.4

C.1

D.2

查看答案和解析>>

同步練習冊答案