【題目】拋物線y=ax2+bx+3a0)經(jīng)過點(diǎn)A1,0),B,0),且與y軸相交于點(diǎn)C

(1)求這條拋物線的表達(dá)式;

(2)求∠ACB的度數(shù);

(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).

【答案】1)拋物線的解析式為y=2x2+x+3;(2ACB=45°;(3D, ).

【解析】試題分析: (1)把點(diǎn)A、B、C的坐標(biāo)分別代入已知拋物線的解析式列出關(guān)于系數(shù)的三元一次方程組

9a3b+c=0

a+b+c=0

4a2b+c=1

,通過解該方程組即可求得系數(shù)的值;
(2)由(1)中的拋物線解析式易求點(diǎn)M的坐標(biāo)為(0,1).所以利用待定系數(shù)法即可求得直線AM的關(guān)系式為y=

1

3

x+1.由題意設(shè)點(diǎn)D的坐標(biāo)為(x0,

1

3

x02

2

3

x0+1),則點(diǎn)F的坐標(biāo)為(x0,

1

3

x0+1).易求DF=

1

3

x02

2

3

x0+1(

1

3

x0+1)=

1

3

x02x0

1

3

(x0+

3

2

)2+

3

4

.根據(jù)二次函數(shù)最值的求法來求線段DF的最大值;
(3)需要對點(diǎn)P的位置進(jìn)行分類討論:點(diǎn)P分別位于第一、二、三、四象限四種情況.此題主要利用相似三角形的對應(yīng)邊成比例進(jìn)行解答.

試題解析: 由題意可知

9a3b+c=0

a+b+c=0

4a2b+c=1

.解得

a=

1

3

b=

2

3

c=1


∴拋物線的表達(dá)式為y=-

1

3

x2

2

3

x+1.

(2)將x=0代入拋物線表達(dá)式,得y=1.∴點(diǎn)M的坐標(biāo)為(0,1).
設(shè)直線MA的表達(dá)式為y=kx+b,則

b=1

3k+b=0


解得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經(jīng)過A(0,2)、B(4,0)兩點(diǎn).

(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)作垂直x軸的直線x=t,在第一象限交直線ABM,交這條拋物線于N,求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

(3)在(1)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,請直接寫出第四個(gè)頂點(diǎn)D的所有坐標(biāo)(直接寫出結(jié)果,不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AB=2,BC=,點(diǎn)E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE翻折得到多邊形AB’C’E,點(diǎn)B、C的對應(yīng)點(diǎn)分別為點(diǎn)B’,C’

1)當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求DF的長

2)如果點(diǎn)MCD的中點(diǎn),那么在點(diǎn)E從點(diǎn)C移動到點(diǎn)D的過程中,求C’M的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小馬虎做一道數(shù)學(xué)題,已知兩個(gè)多項(xiàng)式,,試求.”其中多項(xiàng)式的二次項(xiàng)系數(shù)印刷不清楚.

1)小馬虎看答案以后知道,請你替小馬虎求出系數(shù);

2)在(1)的基礎(chǔ)上,小馬虎已經(jīng)將多項(xiàng)式正確求出,老師又給出了一個(gè)多項(xiàng)式,要求小馬虎求出的結(jié)果.小馬虎在求解時(shí),誤把看成,結(jié)果求出的答案為.請你替小馬虎求出的正確答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.

(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;

(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在正方形 ABCD 中,E,F 分別是 AD,CD 上兩點(diǎn),BE AF 于點(diǎn) G,且 DECF

1)寫出 BE AF 之間的關(guān)系,并證明你的結(jié)論;

2)如圖 2,若 AB2,點(diǎn) E AD 的中點(diǎn),求 AG 的長度。

3)在(2)的條件下,連接 GD,試證明 GD 是∠EGF 的角平分線,并求出 GD 的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】魔術(shù)師為大家表演魔術(shù). 他請觀眾想一個(gè)數(shù),然后將這個(gè)數(shù)按以下步驟操作:

魔術(shù)師立刻說出觀眾想的那個(gè)數(shù).

1)如果小明想的數(shù)是-2,那么他告訴魔術(shù)師的結(jié)果應(yīng)該是_________________;

2)如果小聰想了一個(gè)數(shù)并告訴魔術(shù)師結(jié)果為9,那么魔術(shù)師立刻說出小聰想的那個(gè)數(shù)是 ;請解釋魔術(shù)師是如何求出那個(gè)數(shù)的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4, ),B-1,2)是一次函數(shù)y=kx+b與反比例函數(shù)y= (m≠0,m0)圖象的兩個(gè)交點(diǎn),ACx軸于C,BDy軸于D。

(1)、根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?

(2)、求一次函數(shù)解析式及m的值;

(3)、P是線段AB上的一點(diǎn),連接PC,PD,若△PCA△PDB面積相等,求點(diǎn)P坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題:

(1) 4+(1)=___ (2) 3(2)=___;(3)2×4=___(4)6÷(2)=___;(5)5+(1)2=___;(6)1÷3×=___.

查看答案和解析>>

同步練習(xí)冊答案