試題分析:(1)要證明BD是四邊形ABCD的和諧線,只需要證明△ABD和△BDC是等腰三角形就可以;
(2)根據(jù)扇形的性質(zhì)弧上的點到頂點的距離相等,只要D在
中點時構成的四邊形ABDC就是和諧四邊形;連接BC,在△BAC外作一個以AC為腰的等腰三角形ACD,構成的四邊形ABCD就是和諧四邊形,
(3)由AC是四邊形ABCD的和諧線,可以得出△ACD是等腰三角形,從圖4,圖5,圖6三種情況運用等邊三角形的性質(zhì),正方形的性質(zhì)和30°的直角三角形性質(zhì)就可以求出∠BCD的度數(shù).
試題解析:(1)∵AD∥BC,
∴∠ABC+∠BAD=180°,∠ADB=∠DBC.
∵∠BAD=120°,
∴∠ABC=60°.
∵BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∴∠ABD=∠ADB,
∴△ADB是等腰三角形.
在△BCD中,∠C=75°,∠DBC=30°,
∴∠BDC=∠C=75°,
∴△BCD為等腰三角形,
∴BD是梯形ABCD的和諧線;
(2)由題意作圖為:圖2,圖3
(3)∵AC是四邊形ABCD的和諧線,
∴△ACD是等腰三角形.
∵AB=AD=BC,
如圖4,當AD=AC時,
∴AB=AC=BC,∠ACD=∠ADC
∴△ABC是正三角形,
∴∠BAC=∠BCA=60°.
∵∠BAD=90°,
∴∠CAD=30°,
∴∠ACD=∠ADC=75°,
∴∠BCD=60°+75°=135°.
如圖5,當AD=CD時,
∴AB=AD=BC=CD.
∵∠BAD=90°,
∴四邊形ABCD是正方形,
∴∠BCD=90°
如圖6,當AC=CD時,過點C作CE⊥AD于E,過點B作BF⊥CE于F,
∵AC=CD.CE⊥AD,
∴AE=
AD,∠ACE=∠DCE.
∵∠BAD=∠AEF=∠BFE=90°,
∴四邊形ABFE是矩形.
∴BF=AE.
∵AB=AD=BC,
∴BF=
BC,
∴∠BCF=30°.
∵AB=BC,
∴∠ACB=∠BAC.
∵AB∥CE,
∴∠BAC=∠ACE,
∴∠ACB=∠ACE=
∠BCF=15°,
∴∠BCD=15°×3=45°.