如圖,已知△ABC中,∠ACB=90°,以AB所在直線(xiàn)為x軸,過(guò)c點(diǎn)的直線(xiàn)為y軸建立平面直角坐標(biāo)系.此時(shí),A點(diǎn)坐標(biāo)為(-1,0),B點(diǎn)坐標(biāo)為(4,0)
(1)試求點(diǎn)C的坐標(biāo);
(2)若拋物線(xiàn)y=ax2+bx+c過(guò)△ABC的三個(gè)頂點(diǎn),求拋物線(xiàn)的解析式;
(3)點(diǎn)D(1,m)在拋物線(xiàn)上,過(guò)點(diǎn)A的直線(xiàn)y=-x-1交(2)中的拋物線(xiàn)于點(diǎn)E,那么在x軸上點(diǎn)B的左側(cè)是否存在點(diǎn)P,使以P、B、D為頂點(diǎn)的三角形與△ABE相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

【答案】分析:(1)在Rt△ABC中,OC⊥AB,根據(jù)射影定理即可求出OC的長(zhǎng),由此得到C點(diǎn)的坐標(biāo);
(2)將A、B、C三點(diǎn)坐標(biāo)代入拋物線(xiàn)的解析式中,即可求出待定系數(shù)的值,從而確定其解析式;
(3)根據(jù)拋物線(xiàn)的解析式,易求得D(1,3);聯(lián)立直線(xiàn)AE的解析式即可求得E點(diǎn)的坐標(biāo),此時(shí)可發(fā)現(xiàn)∠OBD和∠EAB同為45°,對(duì)應(yīng)相等,若以P、B、D為頂點(diǎn)的三角形與△ABE相似,可考慮兩種情況:
①△PBD∽△BAE,②△PBD∽△EAB;根據(jù)上述兩種情況所得到的不同比例線(xiàn)段即可求出BP的長(zhǎng),從而確定P點(diǎn)的坐標(biāo).
解答:解:(1)在Rt△ABC中,∠ACB=90°,OC⊥AB,
由射影定理,得:OC2=OA•OB=4,即OC=2,
∴C(0,2);

(2)∵拋物線(xiàn)經(jīng)過(guò)A(-1,0),B(4,0),C(0,2),
可設(shè)拋物線(xiàn)的解析式為y=a(x+1)(x-4)(a≠0),則有:
2=a(0+1)(0-4),a=-
∴y=-(x+1)(x-4)=-x2+x+2;

(3)存在符合條件的P點(diǎn),且P(,0)或(-,0).
根據(jù)拋物線(xiàn)的解析式易知:D(1,3),
聯(lián)立直線(xiàn)AE和拋物線(xiàn)的解析式有:
,
解得,,
∴E(6,-7),
∴tan∠DBO==1,即∠DBO=45°,tan∠EAB==1,即∠EAB=45°,
∴∠DBA=∠EAB,
若以P、B、D為頂點(diǎn)的三角形與△ABE相似,則有兩種情況:
①△PBD∽△BAE;②△PBD∽△EAB.
易知BD=3,EA=7,AB=5,
由①得:,即,即PB=,OP=OB-PB=
由②得:,即,即P′B=,OP′=OB-BP′=-
∴P(,0)或(-,0).
點(diǎn)評(píng):此題主要考查了直角三角形的性質(zhì)、二次函數(shù)解析式的確定以及相似三角形的判定和性質(zhì),要注意當(dāng)相似三角形的對(duì)應(yīng)邊和對(duì)應(yīng)角不確定的情況下需要分類(lèi)討論,以免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過(guò)A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案