【題目】閱讀材料:
在一個三角形中,各邊和它所對角的正弦的比相等, = = ,利用上述結(jié)論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵ = ∴b= = = =3
理解應(yīng)用:
如圖,甲船以每小時30 海里的速度向正北方向航行,當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10 海里.

(1)判斷△A1A2B2的形狀,并給出證明;
(2)求乙船每小時航行多少海里?

【答案】
(1)

解:△A1A2B2是等邊三角形,理由如下:

連結(jié)A1B2

∵甲船以每小時30 海里的速度向正北方向航行,航行20分鐘到達(dá)A2,

∴A1A2=30 × =10

又∵A2B2=10 ,∠A1A2B2=60°,

∴△A1A2B2是等邊三角形;


(2)

解:過點B作B1N∥A1A2,如圖,

∵B1N∥A1A2

∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,

∴∠A1B1B2=75°﹣15°=60°.

∵△A1A2B2是等邊三角形,

∴∠A2A1B2=60°,A1B2=A1A2=10 ,

∴∠B1A1B2=105°﹣60°=45°.

在△B1A1B2中,

∵A1B2=10 ,∠B1A1B2=45°,∠A1B1B2=60°,

由閱讀材料可知, = ,

解得B1B2= =

所以乙船每小時航行: ÷ =20 海里.


【解析】(1)先根據(jù)路程=速度×?xí)r間求出A1A2=30 × =10 ,又A2B2=10 ,∠A1A2B2=60°,根據(jù)有一個角是60°的等腰三角形是等邊三角形即可得出△A1A2B2是等邊三角形;(2)先由平行線的性質(zhì)及方向角的定義求出∠A1B1B2=75°﹣15°=60°,由等邊三角形的性質(zhì)得出∠A2A1B2=60°,A1B2=A1A2=10 ,那么∠B1A1B2=105°﹣60°=45°.然后在△B1A1B2中,根據(jù)閱讀材料可知, = ,求出B1B2的距離,再由時間求出乙船航行的速度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西寧市教育局在局屬各初中學(xué)校設(shè)立“自主學(xué)習(xí)日”,規(guī)定每周三學(xué)校不得以任何形式布置家庭作業(yè),為了解各學(xué)校的落實情況,從七、八年級學(xué)生中隨機(jī)抽取了部分學(xué)生的反饋表,針對以下六個項目(每人只能選一項):A.課外閱讀;B.家務(wù)勞動;C.體育鍛煉;D.學(xué)科學(xué)習(xí);E.社會實踐;F.其他項目進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次抽查的樣本容量為 , 請補(bǔ)全條形統(tǒng)計圖;
(2)全市約有4萬名在校初中學(xué)生,試估計全市學(xué)生中選擇體育鍛煉的人數(shù)約有多少人?
(3)七年級(1)班從選擇社會實踐的2名女生和1名男生中選派2名參加校級社會實踐活動,請你用樹狀圖或列表法求出恰好選到1男1女的概率是多少?并列舉出所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結(jié)BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與△OBC相似?并求出此時點P的坐標(biāo);
(3)如圖2,當(dāng)點P在位于直線BC上方的拋物線上運動時,連結(jié)PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標(biāo),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求進(jìn)行計算:
(1)計算:|﹣ |﹣ +2sin60°+( 1+(2﹣ 0
(2)先化簡,再求值: ÷(1﹣ ),其中a= ﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,tanA= ,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,給出如下幾個結(jié)論:(1)△AED≌△DFB;(2)CG與BD一定不垂直;(3)∠BGE的大小為定值;(4)S四邊形BCDG= CG2;其中正確結(jié)論的序號為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵大學(xué)生創(chuàng)業(yè),政府制定了小型企業(yè)的優(yōu)惠政策,許多小型企業(yè)應(yīng)運而生.某市統(tǒng)計了該市2015年1﹣5月新注冊小型企業(yè)的數(shù)量,并將結(jié)果繪制成如圖兩種不完整的統(tǒng)計圖:
(1)某市2015年1﹣5月份新注冊小型企業(yè)一共家,請將折線統(tǒng)計圖補(bǔ)充完整.
(2)該市2015年3月新注冊小型企業(yè)中,只有2家是養(yǎng)殖企業(yè),現(xiàn)從3月新注冊的小型企業(yè)中隨機(jī)抽取2家企業(yè)了解其經(jīng)營情況.請以列表或畫樹狀圖的方法求出所抽取的2家企業(yè)恰好都是養(yǎng)殖企業(yè)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=4,射線BM和AB互相垂直,點D是AB上的一個動點,點E在射線BM上,BE= DB,作EF⊥DE并截取EF=DE,連結(jié)AF并延長交射線BM于點C.設(shè)BE=x,BC=y,則y關(guān)于x的函數(shù)解析式是(
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當(dāng)天舉辦了甲、乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機(jī)會.已知在搖獎機(jī)內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎?wù)弑仨殢膿u獎機(jī)內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如表)

甲種品牌化妝品

兩紅

一紅一白

兩白

禮金券(元)

6

12

6

乙種品牌化妝品

兩紅

一紅一白

兩白

禮金券(元)

12

6

12


(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;
(2)如果一個顧客當(dāng)天在本店購物滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盤錦紅海灘景區(qū)門票價格80元/人,景區(qū)為吸引游客,對門票價格進(jìn)行動態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費用為y元,非節(jié)假日門票費用y1(元)及節(jié)假日門票費用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.

(1)a=   ,b=   ;
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到紅海灘景區(qū)旅游,兩團(tuán)共計50人,兩次共付門票費用3040元,求A、B兩個旅游團(tuán)各多少人?

查看答案和解析>>

同步練習(xí)冊答案