【題目】在平面直角坐標系中,規(guī)定把一個點先繞原點逆時針旋轉(zhuǎn)45°,再作出旋轉(zhuǎn)后的點關(guān)于原點的對稱點,這稱為一次變換,已知點A的坐標為(﹣1,0),則點A經(jīng)過連續(xù)2016次這樣的變換得到的點A2016的坐標是

【答案】(﹣1,0)
【解析】解:由題意第一次旋轉(zhuǎn)后的坐標為( , ),
第二次旋轉(zhuǎn)后的坐標為(0,﹣1),
第三次旋轉(zhuǎn)后的坐標為(﹣ , ),
第四次旋轉(zhuǎn)后的坐標為(1,0),
第五次旋轉(zhuǎn)后的坐標為(﹣ ,﹣ ),
第六次旋轉(zhuǎn)后的坐標為(0,1),
第七次旋轉(zhuǎn)后的坐標為( ,1 ),
第八次旋轉(zhuǎn)后的坐標為(﹣1,0)
因為2016÷8=252,
所以把點A經(jīng)過連續(xù)2016次這樣的變換得到的點A2016的坐標是(﹣1,0).
故答案是:(﹣1,0).
分別求得第一、二、三…八次變換后的坐標,得到每8次循環(huán)一次.則2016÷8=252即可求得結(jié)果.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉(zhuǎn).
(1)當三角板旋轉(zhuǎn)到圖1的位置時,猜想CE與AF的數(shù)量關(guān)系,并加以證明;

(2)在(1)的條件下,若DE:AE:CE=1: :3,求∠AED的度數(shù);
(3)若BC=4,點M是邊AB的中點,連結(jié)DM,DM與AC交于點O,當三角板的一邊DF與邊DM重合時(如圖2),若OF= ,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算:( ﹣π)0﹣6tan30°+( 2+|1+ |.
(2)解不等式組 ,并寫出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:兩條拋物線頂點都在直線y=x上,且兩條拋物線關(guān)于原點成中心對稱,則稱這兩條拋物線為一對“友好拋物線”.

(1)拋物線y=2(x-1)2+1如圖1所示,請畫出它的“友好拋物線”,并直接寫出它的解析式;
(確認無誤后,請用黑色水筆描黑)
(2)一對“友好拋物線”,其中一條拋物線的解析式為y= -(x+h)2-h,這對“友好拋物線”與y軸交點記為A,B,記AB=n(當A與B重合時,記n=0),現(xiàn)我們來探究n與h的關(guān)系;
①當h≥0時,如圖2所示,求n與h的函數(shù)關(guān)系式;
②當h<0時,求n與h的函數(shù)關(guān)系式;
(3)在(2)的條件下,要使 ≤n≤ ,試直接寫出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+mx+n.
(1)若該二次函數(shù)的圖象與x軸只有一個交點,請用含m的代數(shù)式表示n;
(2)若該二次函數(shù)的圖象與x軸交于A、B兩點,其中點A的坐標為(﹣1,0),AB=4,請求出該二次函數(shù)的表達式及頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=kx2+ x+ (k是常數(shù)).
(1)若該函數(shù)的圖象與x軸有兩個不同的交點,試求k的取值范圍;
(2)若點(1,k)在某反比例函數(shù)圖象上,要使該反比例函數(shù)和二次函數(shù)y=kx2+ x+ 都是y隨x的增大而增大,求k應(yīng)滿足的條件及x的取值范圍;
(3)若拋物線y=kx2+ x+ 與x軸交于A(xA , 0)、B(xB , 0)兩點,且xA<xB , xA2+xB2=34,若與y軸不平行的直線y=ax+b經(jīng)過點P(1,3),且與拋物線交于Q1(x1 , y1)、Q2(x2 , y2)兩點,試探究 是否為定值,并寫出探究過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,方格紙中的每個小方格都是邊長為1的正方形,Rt△ABC的項點均在格點上.A(﹣6,1)B(﹣3,1)C(﹣3,3)

(1)將Rt△ABC沿x軸正方向平移5個單位長度后得到Rt△A1B1C1 . 試在圖中畫出Rt△A1B1C1 , 并寫出C1點的坐標;
(2)將Rt△ABC繞點B順時針旋轉(zhuǎn)90°后得到Rt△A2B2C2 . 試在圖中畫出Rt△A2B2C2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y= 和y=﹣ 的圖象分別是l1和l2 . 設(shè)點P在l1上,PC⊥x軸,垂足為C,交l2于點A,PD⊥y軸,垂足為D,交l2于點B,則△PAB的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,O為BC的中點,AB與⊙O相切于點D.

(1)求證:AC是⊙O的切線;
(2)若∠B=33°,⊙O的半徑為1,求BD的長.(結(jié)果精確到0.01)

查看答案和解析>>

同步練習冊答案