判斷下面的結(jié)論是否正確,并說(shuō)明理由

(1)如圖:AE平分∠CAD,AE∥BC,那么∠B=∠C

(2)如圖:如果∠B=∠C,AE∥BC,那么AE平分∠CAD.

答案:
解析:

  正確,∵AE∥BC∴∠B=∠DAE,∠C=∠EAC∴∠DAE=∠CAE,∴∠B=∠C

  正確,∵AE∥BC∴∠B=∠DAE,∠C=∠EAC∵∠B=∠C∴∠DAE=∠CAE,即AE平分∠DAC


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•天河區(qū)一模)如圖(1),AB、BC、CD分別與⊙O相切于點(diǎn)E、F、G,且AB∥CD,若OB=6,OC=8,
(1)求BC和OF的長(zhǎng);
(2)求證:E、O、G三點(diǎn)共線;
(3)小葉從第(1)小題的計(jì)算中發(fā)現(xiàn):等式
1
OF2
=
1
OB2
+
1
OC2
成立,于是她得到這樣的結(jié)論:
如圖(2),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,CD=h,則有等式
1
a2
+
1
b2
=
1
h2
成立.請(qǐng)你判斷小葉的結(jié)論是否正確,若正確,請(qǐng)給予證明,若不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆山東東阿縣第三中學(xué)中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖(1),AB、BC、CD分別與⊙O相切于點(diǎn)E、F、G,且AB∥CD,若,

【小題1】求BC和OF的長(zhǎng);
【小題2】求證:三點(diǎn)共線;
【小題3】小葉從第(1)小題的計(jì)算中發(fā)現(xiàn):等式成立,于是她得到這樣的結(jié)論:如圖(2),在中,,,垂足為,設(shè),,則有等式成立.請(qǐng)你判斷小葉的結(jié)論是否正確,若正確,請(qǐng)給予證明,若不正確,請(qǐng)說(shuō)明理由.  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東東阿縣第三中學(xué)中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1),AB、BC、CD分別與⊙O相切于點(diǎn)E、F、G,且AB∥CD, 若,

1.求BC和OF的長(zhǎng);

2.求證:三點(diǎn)共線;

3.小葉從第(1)小題的計(jì)算中發(fā)現(xiàn):等式成立,于是她得到這樣的結(jié)論:如圖(2),在中,,,垂足為,設(shè),則有等式成立.請(qǐng)你判斷小葉的結(jié)論是否正確,若正確,請(qǐng)給予證明,若不正確,請(qǐng)說(shuō)明理由.  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年廣東省廣州市天河區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖(1),AB、BC、CD分別與⊙O相切于點(diǎn)E、F、G,且AB∥CD,若OB=6,OC=8,
(1)求BC和OF的長(zhǎng);
(2)求證:E、O、G三點(diǎn)共線;
(3)小葉從第(1)小題的計(jì)算中發(fā)現(xiàn):等式成立,于是她得到這樣的結(jié)論:
如圖(2),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,CD=h,則有等式成立.請(qǐng)你判斷小葉的結(jié)論是否正確,若正確,請(qǐng)給予證明,若不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案