請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,

由旋轉可得:AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.

(3)類比(1)證明思想完成下列問題:在同一平面內,將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點A旋轉,AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉過程中,等式BD+CE=DE始終成立,請說明理由.

解:(1)EAF、△EAF、GF                                              
(2) 過A作AG⊥BC,交BC延長線于G.

在直角梯形ABCD中,
∵AD∥BC,∴∠C=∠D=90°,
又∠CGA=90°,AD=CD,
∴四邊形AGCD為正方形.                                              
∴CG=AD=10.
已知∠BAE=45°,
根據(jù)(1)可知,BE=GB+DE.                     
設BE=x,則BG=x-4,
∴BC=14-x.
在Rt△BCE中,  ∵,即.      
解這個方程,得:x=
∴BE=.                                                        
(3)證明:如下圖,將∆ACE繞點A順時針旋轉90°至∆ABH的位置,      

則CE=HB,AE=AH,∠ABH=∠C=45°,旋轉角∠EAH=90°.                
連接HD,在∆EAD和∆HAD中
∵AE=AH,∠HAD="∠EAH-∠FAG=45°=∠EAD," AD=AD.
∴∆EAD≌∆HAD   ∴DH=DE                                       
又∠HBD=∠ABH+∠ABD=90°  ∴BD+HB=DH
即BD+CE=DE                      

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
FAE
FAE

又AG=AE,AF=AF
∴△GAF≌
△EAF
△EAF

GF
GF
=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.
(3)類比(1)證明思想完成下列問題:在同一平面內,將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點A旋轉,AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉過程中,等式BD2+CE2=DE2始終成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年廣東省佛山市南海區(qū)九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

請嘗試解決以下問題:

(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

感悟解題方法,并完成下列填空:

將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,

 

 

由旋轉可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,點G,B,F(xiàn)在同一條直線上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,   ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:

如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.

 

 

(2)類比(1)證明思想完成下列問題:在同一平面內,將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點A旋轉,AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉過程中,等式BD+CE=DE始終成立,請說明理由.

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年廣東省佛山市南海區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠______.
又AG=AE,AF=AF
∴△GAF≌______.
∴______=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.
(3)類比(1)證明思想完成下列問題:在同一平面內,將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點A旋轉,AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉過程中,等式BD2+CE2=DE2始終成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年云南省昆明十中中考數(shù)學一模試卷(解析版) 題型:解答題

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠______.
又AG=AE,AF=AF
∴△GAF≌______.
∴______=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.
(3)類比(1)證明思想完成下列問題:在同一平面內,將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點A旋轉,AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉過程中,等式BD2+CE2=DE2始終成立,請說明理由.

查看答案和解析>>

同步練習冊答案