【題目】如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為( )
A.6
B.12
C.32
D.64
【答案】C
【解析】解:∵△A1B1A2是等邊三角形, ∴A1B1=A2B1 , ∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3 , B1A2∥B2A3 ,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2 , B3A3=2B2A3 ,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此類推:A6B6=32B1A2=32.
故選:C.
【考點精析】利用等邊三角形的性質(zhì)和含30度角的直角三角形對題目進行判斷即可得到答案,需要熟知等邊三角形的三個角都相等并且每個角都是60°;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當x=2時,代數(shù)式ax﹣2的值為4,則當x=﹣2時,代數(shù)式ax﹣2的值為( )
A.﹣8
B.﹣4
C.2
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一小球被拋出后,距離地面的高度h(米)和飛行時間t(秒)滿足下面函數(shù)關(guān)系式:h=﹣5(t﹣1)2+6,則小球距離地面的最大高度是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點A、B和D的距離分別為1,,,△ADP沿點A旋轉(zhuǎn)至△ABP′,連結(jié)PP′,并延長AP與BC相交于點Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大;
(3)求CQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,且OA、OB的長滿足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分線交x軸于點C過點C作AB的垂線,垂足為點D,交y軸于點E.
(1)求線段AB的長;
(2)求直線CE的解析式;
(3)若M是射線BC上的一個動點,在坐標平面內(nèi)是否存在點P,使以A、B、M、P為頂點的四邊形是矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com