已知兩圓的半徑分別是1和5,圓心距為3,則兩圓位置關系為( )
A.相交
B.外切
C.內(nèi)切
D.內(nèi)含
【答案】分析:先求兩圓半徑的和與差,再與圓心距進行比較,確定兩圓的位置關系.
解答:解:因為圓心距=3,兩圓半徑差=5-1=4>3,
根據(jù)圓心距與半徑之間的數(shù)量關系可知,
兩圓的位置關系是內(nèi)含.故選D.
點評:本題考查了由數(shù)量關系來判斷兩圓位置關系的方法.設兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離d>R+r;外切d=R+r;相交R-r<d<R+r;內(nèi)切d=R-r;內(nèi)含d<R-r.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、已知兩圓的半徑分別是7和4,圓心距是5,那么這兩圓公切線的條數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知兩圓的半徑分別是4cm和5cm,當兩圓外切時,兩圓的圓心距為
9
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、已知兩圓的半徑分別是2和4,圓心距是3,那么這兩圓的位置是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北海)已知兩圓的半徑分別是3和4,圓心距的長為1,則兩圓的位置關系為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•金牛區(qū)二模)已知兩圓的半徑分別是一元二次方程x2-10x+24=0的兩根,圓心距為10,則這兩圓的位置關系是
外切
外切

查看答案和解析>>

同步練習冊答案