對于一個(gè)銳角三角形,甲測得邊長分別是5cm,6cm,11cm,乙測得三個(gè)內(nèi)角分別為33°,49°,78°,丙測得三個(gè)內(nèi)角分別為33°,59°,78°,丁測得三個(gè)內(nèi)角分別為33°,59°,88°,其中只有一個(gè)人測得結(jié)果是正確的,此人是(  )
分析:分別根據(jù)三角形的三邊關(guān)系,三角形內(nèi)角和定理對各小題進(jìn)行逐一分析即可.
解答:解:5+6=11不符合三角形的三邊關(guān)系,故甲錯(cuò)誤;
33°+49°+78°=160°<180°,故乙錯(cuò)誤;
33°+59°+78°=170°<180°,故丙錯(cuò)誤;
33°+59°+88°=180°,故丁正確.
故選D.
點(diǎn)評:本題考查的是三角形內(nèi)角和定理,熟知三角形的內(nèi)角和等于180°是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)sad A=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad60°的值為( 。〢.
1
2
  B.1  C.
3
2
D.2
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角正對(sad),如圖①,在△ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)sadA=底邊/腰=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad60°=
 

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
 

(3)如圖②,已知sinA=
3
5
,其中∠A為銳角,試求sadA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)sad A=
1
2
.容易知道一個(gè)角的大小與這個(gè)角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于三角形的三個(gè)外角、下面結(jié)論中正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案