已知:如圖,在平面直角坐標(biāo)系xoy中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn)C(0,-2),D(-3,-2).
(1)求△BCD的面積;
(2)若AC⊥BC于C,作∠CBA的平分線交CO于P,交CA于Q,求證:∠CQP=∠CPQ
(3)若點(diǎn)B為x軸正半軸上的動(dòng)點(diǎn),∠ACB的平分線CE交DA的延長(zhǎng)線于E點(diǎn),設(shè)∠ADC=∠DAC=α,∠ACE=β,請(qǐng)你用含α、β的式子表示∠E的大。
(4)在(3)的條件下,
∠E∠ABC
的值是否變化?若不變,求出其值;若變化,請(qǐng)說(shuō)明理由.
分析:(1)求出CD的長(zhǎng)度,再根據(jù)三角形的面積公式列式計(jì)算即可得解;
(2)根據(jù)角平分線的定義可得∠ABQ=∠CBQ,然后根據(jù)等角的余角相等解答;
(3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式整理即可得解;
(4)在△AOE和△BOC中,利用三角形內(nèi)角和定理列式整理表示出∠ABC,然后相比即可得解.
解答:解:(1)∵點(diǎn)C(0,-2),D(-3,-2),
∴CD=3,且CD∥x軸,
∴△BCD的面積=
1
2
×3×2=3;

(2)∵BQ平分∠CBA,
∴∠ABQ=∠CBQ,
∵AC⊥BC,
∴∠CBQ+∠CQP=90°,
又∵∠ABQ+∠CPQ=90°,
∴∠CQP=∠CPQ;

(3)在△ACE中,∠E=∠DAC-∠ACE=α-β;

(4)在△AOE和△BOC中,∠E+∠EAO+∠AOE=180°,
∠ABC+∠BCO+∠BOC=180°,
∵CD∥x軸,
∴∠EAO=∠ADC=α,
又∵∠AOE=∠BOC(對(duì)頂角相等),
∴∠E+∠EAO=∠ABC+∠BCO,
即α-β+α=∠ABC+β,
∴∠ABC=2(α-β),
∠E
∠ABC
=
1
2
,(是定值,不變).
點(diǎn)評(píng):本題考查了坐標(biāo)與圖形性質(zhì),三角形的角平分線,三角形的面積,三角形的內(nèi)角和定理,三角形的外角性質(zhì),綜合題,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫(xiě)出滿(mǎn)足條件的一個(gè)答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆重慶萬(wàn)州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開(kāi)始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開(kāi)始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動(dòng)過(guò)程中, 四邊形OPEM是什么四邊形?請(qǐng)說(shuō)明理由。若
用y表示四邊形OPEM的面積 ,直接寫(xiě)出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
若有,請(qǐng)求出所有滿(mǎn)足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫(xiě)出滿(mǎn)足條件的一個(gè)答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案