【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F,交AB的延長線于點(diǎn)G.
(1)求證:DF是⊙O的切線;
(2)已知BD=2,CF=2,求AE和BG的長.
【答案】(1)見解析;(2)AE=6,BG=
【解析】
(1)連接OD,AD,由圓周角定理可得AD⊥BC,結(jié)合等腰三角形的性質(zhì)知BD=CD,再根據(jù)OA=OB知OD∥AC,從而由DG⊥AC可得OD⊥FG,即可得證;
(2)連接BE.BE∥GF,推出△AEB∽△AFG,可得= ,由此構(gòu)建方程即可解決問題;
(1)證明:如圖,連接OD,AD.
∵AB為⊙O的直徑,
∴∠ADB=90°,即AD⊥BC.
∵AB=AC,
∴BD=CD.
又∵OA=OB,
∴OD∥AC.
∵DF⊥AC,
∴OD⊥DF,
∴直線DF與⊙O相切.
(2)解:如圖,連接BE.
∵BD=2,
∴CD=BD=2.
∵CF=2,
∴DF=,
∴BE=2DF=8.
∵cos∠C=cos∠ABC,
∴,
∴=,
∴AB=10,
∴AE==6.
∵BE⊥AC,DF⊥AC,
∴BE∥GF,
∴△AEB∽△AFG,
∴=,
∴= ,
∴BG= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2, 求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于A (-1,0),B (5,0)兩點(diǎn),直線與y軸交于點(diǎn),與軸交于點(diǎn).點(diǎn)是x軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)作⊥軸于點(diǎn),交直線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為.
(1)求拋物線的解析式;
(2)若,求的值;
(3)若點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是否存在點(diǎn),使點(diǎn)落在軸上?若存在,請(qǐng)直接寫出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在距離鐵軌200 m的B處,觀察從甲地開往乙地的“和諧號(hào)”動(dòng)車,當(dāng)動(dòng)車車頭在A處時(shí),恰好位于B處的北偏東60°方向上.10 s后,動(dòng)車車頭到達(dá)C處,恰好位于B處的西北方向上,則這列動(dòng)車的平均車速是________ m/s(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列四個(gè)結(jié)論:①abc>0;②b2﹣4ac>0;③a+b+c<0;④b>2a.其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)C(1,0),直線與兩坐標(biāo)軸分別交于A,B兩點(diǎn),D,E分別是線段AB,OA上的動(dòng)點(diǎn),則△CDE的周長的最小值是( )
A.B.10
C.D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一船在某燈墻C正東方向10海里處的A點(diǎn),以25海里/時(shí)的速度沿北偏西30°方向航行.
(1)問多長時(shí)間后,船距燈塔最近?
(2)求船到達(dá)燈塔的正北方向時(shí)航行了多少海里?此時(shí),距離燈塔有多遠(yuǎn)?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知:如圖,是的內(nèi)接正三角形,點(diǎn)為弧上一動(dòng)點(diǎn),求證:;
(2)如圖,四邊形是的內(nèi)接正方形,點(diǎn)為弧上一動(dòng)點(diǎn),求證:;
(3)如圖,六邊形是的內(nèi)接正六邊形,點(diǎn)為弧上一動(dòng)點(diǎn),請(qǐng)?zhí)骄?/span>三者之間有何數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com