【題目】下列計(jì)算正確的是( 。
A.6a23ab=9a3b
B.(2ab2)(﹣2ab)=﹣4a2b3
C.(ab)2(﹣a2b)=﹣a3b3
D.(﹣3a2b)(﹣3ab)=﹣6a3b2

【答案】B
【解析】A、原式=18a3b,故本選項(xiàng)錯(cuò)誤;B、原式=﹣4a2b3 , 故本選項(xiàng)正確;C、原式=﹣a4b3 , 故本選項(xiàng)錯(cuò)誤;D、原式=9a3b2 , 故本選項(xiàng)錯(cuò)誤;
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用單項(xiàng)式乘單項(xiàng)式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將含有30°角的直角三角板OAB按如圖所示的方式放置在平面直角坐標(biāo)系中,OB在x軸上,若OA=4,將三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)60°,則第2017秒時(shí),點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。

A. (0,4) B. (2,﹣2) C. (﹣2,2) D. (0,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿邊CB向點(diǎn)B以每秒a個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD⊥BC,交AB于點(diǎn)D,連接PQ.當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).

(1)當(dāng)a=2時(shí),解答下列問(wèn)題:

①Q(mào)B=   ,PD=   .(用含t的代數(shù)式分別表示)

②通過(guò)計(jì)算說(shuō)明,不存在t的值使得四邊形PDBQ為菱形.

(2)當(dāng)a為某個(gè)數(shù)值時(shí),四邊形PDBQ在某一時(shí)刻為菱形,求a的值及四邊形PDBQ為菱形時(shí)t的值.

(3)當(dāng)t=2時(shí),在整個(gè)運(yùn)動(dòng)過(guò)程中,恰好存在線段PQ的中點(diǎn)M到△ABC三邊距離相等,直接寫出此刻a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4的算術(shù)平方根是( )

A.2B.2C.±2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給出下列四組條件:
①AB=DE,BC=EF,AC=DF;
②AB=DE,∠B=∠E.BC=EF;
③∠B=∠E,BC=EF,∠C=∠F;
④AB=DE,AC=DF,∠B=∠E.
其中,能使△ABC≌△DEF的條件共有( 。

A.1組
B.2組
C.3組
D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)施農(nóng)村留守兒童關(guān)愛(ài)計(jì)劃,某校對(duì)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成了如下兩幅不完整的統(tǒng)計(jì)圖:

1)將該條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)求該校平均每班有多少名留守兒童?

3)某愛(ài)心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫樹(shù)狀圖的方法,求出所選兩名留守兒童來(lái)自同一個(gè)班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為“格點(diǎn)多邊形”,如圖1中四邊形ABCD就是一個(gè)“格點(diǎn)四邊形”.

(1)求圖1中四邊形ABCD的面積;
(2)在圖2方格紙中畫一個(gè)格點(diǎn)三角形EFG,使△EFG的面積等于四邊形ABCD的面積且為軸對(duì)稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算﹣(a2b)3+2a2b(﹣3a2b)2的結(jié)果為( 。
A.﹣17a6b3
B.﹣18a6b3
C.17a6b3
D.18a6b3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABCD沿過(guò)點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D'處,直線l交CD邊于點(diǎn)E,連接BE.

(1)求證:四邊形BCED'是平行四邊形;
(2)若BE平分∠ABC,求證:AB2=AE2+BE2.

查看答案和解析>>

同步練習(xí)冊(cè)答案