根據(jù)右圖拋物線y=ax2+bx+c的位置,確定系數(shù)a,bc的符號:

a ______, b ______, c ______, ______.  

答案:>0,<0,>0,<0
解析:

>0,<0,>0,<0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將直線y=2x-3向右平移3個單位,再向上平移1個單位,求平移后的直線的關(guān)系式.
解:在直線y=2x-3上任取兩點A(1,-1),B(0,-3).
由題意知:
點A向右平移3個單位得A′(4,-1);再向上平移1個單位得A″(4,0)
點B向右平移3個單位得B′(3,-3);再向上平移1個單位得B″(3,-2)
設(shè)平移后的直線的關(guān)系式為y=kx+b.
則點A″(4,0),B″(3,-2)在該直線上,
可解得k=2,b=-8.
所以平移后的直線的關(guān)系式為y=2x-8.
根據(jù)以上信息解答下面問題:
將二次函數(shù)y=-x2+2x+3的圖象向左平移1個單位,再向下平移2個單位,求平移后的拋物線的關(guān)系式.(平移拋物線形狀不變)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是王老師休假釣魚時的一張照片,魚桿前部分近似呈拋物線的形狀,后部分呈直線形.已知拋物線上關(guān)于對稱軸對稱的兩點B,C之間的距離為2米,頂點O離水面的高度為2
2
3
米,人握的魚桿底端D離水面1
1
3
米,離拐點C的水平距離1米,且仰角為45°,建立如圖所示的平面直角坐標(biāo)系.
(1)試根據(jù)上述信息確定拋物線BOC和CD所在直線的函數(shù)表達式;
(2)當(dāng)繼續(xù)向上拉魚使其剛好露出水面時,釣桿的傾斜角增大了15°,直線部分的長度變成了1米(即ED長為1米),頂點向上增高
2
3
米,且右移
1
2
米(即頂點變?yōu)镕),假設(shè)釣魚線與人手(點D)的水平距離為2
1
4
米,那么釣魚線的長度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•涼山州)先閱讀以下材料,然后解答問題:
材料:將二次函數(shù)y=-x2+2x+3的圖象向左平移1個單位,再向下平移2個單位,求平移后的拋物線的解析式(平移后拋物線的形狀不變).
解:在拋物線y=-x2+2x+3圖象上任取兩點A(0,3)、B(1,4),由題意知:點A向左平移1個單位得到A′(-1,3),再向下平移2個單位得到A″(-1,1);點B向左平移1個單位得到B′(0,4),再向下平移2個單位得到B″(0,2).
設(shè)平移后的拋物線的解析式為y=-x2+bx+c.則點A″(-1,1),B″(0,2)在拋物線上.可得:
-1-b+c=1
c=2
,解得:
b=0
c=2
.所以平移后的拋物線的解析式為:y=-x2+2.
根據(jù)以上信息解答下列問題:
將直線y=2x-3向右平移3個單位,再向上平移1個單位,求平移后的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在同一直角坐標(biāo)系中作出y=
1
2
x2,y=-2x2的圖象,并根據(jù)圖象回答下列問題.
(1)拋物線y=
1
2
x2的開口方向是
向上
向上
,對稱軸是
y軸
y軸
,頂點坐標(biāo)是
(0,0)
(0,0)
;二次函數(shù)y=一2x2的開口方向是
向下
向下
,對稱軸是
y軸
y軸
,頂點坐標(biāo)是
(0,0)
(0,0)

(2)拋物線y=
1
2
x2,當(dāng)x
≠0
≠0
時,拋物線上的點都在x軸上方;當(dāng)x>0時,曲線自左向右逐漸
上升
上升
,它的頂點是圖象的最
點.

查看答案和解析>>

同步練習(xí)冊答案