填表解題:
方程 兩根x1,x2 x1+x2= x1x2=
x2+2x+1=0
x2-3x-4=0
x2+4x-7=0
上表你能猜想若x1,x2是方程ax2+bx+c=0(a不等0)的兩根則x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

利用你的猜想解下列問題:
(1)若x1,x2是方程x2-2x-3=0的兩根求,x12+x22和(x1+2)(x2+2)的值.
(2)已知2+
3
是方程x2-4x+c=0的一個根,求方程的另一個根及c的值.
分析:利用因式分解法和求根公式解方程x2+2x+1=0,x2-3x-4=0,x2+4x-7=0,然后填表,根據(jù)表中的數(shù)據(jù)猜想若x1,x2是方程ax2+bx+c=0(a不等0)的兩根則x1+x2=-
b
a
,x1x2=
c
a

(1)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1•x2=-3,然后變形x12+x22=(x1+x22-2x1•x2,(x1+2)(x2+2)=x1•x2+2(x1+x2)+4,再把x1+x2=2,x1•x2=-3整體代入計算即可;
(2)設(shè)方程的另一個根為x2,根據(jù)根與系數(shù)的關(guān)系得到2+
3
+x2=4,(2+
3
)•x2=c,先求出x2,然后計算c的值.
解答:解:表中從左至右為:x1=-1,x2=-1,x1+x2=-2,x1•x2=1;
x1=4,x2=-1,x1+x2=-3,x1•x2=4;
x1=-2+
11
,x2=-2-
11
,x1+x2=-4,x1•x2=-7;
故答案為-
b
a
,
c
a
;
(1)∵x1+x2=2,x1•x2=-3,
∴x12+x22=(x1+x22-2x1•x2=22-2×(-3)=4+6=10;
(x1+2)(x2+2)=x1•x2+2(x1+x2)+4=-3+4+4=5;
(3)設(shè)方程的另一個根為x2
∵2+
3
+x2=4,
∴x2=2-
3
;
由∵(2+
3
)•x2=c,
∴c=(2+
3
)(2-
3
)=4-3=1,
所以方程的另一個根為2-
3
,c的值為1.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:如果方程的兩根為x1,x2,則x1+x2=-
b
a
,x1•x2=
c
a
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀,再填空解題:
①方程x2-x-6=0的根是x1=3,x2=-2,則x1+x2=1,x1x2=-6;
②方程2x2-7x+3=0的根是x1=
1
2
,x2=3,則x1+x2=
7
2
,x1x2=
3
2

根據(jù)以上①②你能否猜出:
如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0,且a、b、c為常數(shù),b2-4ac≥0)有兩根x1、x2,那么x1+x2、x1x2與系數(shù)a、b、c有什么關(guān)系?請寫出你的猜想并說明理由.
利用公式法求出方程的根即可.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

填表解題:
方程兩根x1,x2x1+x2=x1x2=
x2+2x+1=0
x2-3x-4=0
x2+4x-7=0
上表你能猜想若x1,x2是方程ax2+bx+c=0(a不等0)的兩根則x1+x2=______,x1x2=______
利用你的猜想解下列問題:
(1)若x1,x2是方程x2-2x-3=0的兩根求,x12+x22和(x1+2)(x2+2)的值.
(2)已知2+數(shù)學公式是方程x2-4x+c=0的一個根,求方程的另一個根及c的值.

查看答案和解析>>

科目:初中數(shù)學 來源:《22.2 降次-解一元二次方程》2009年同步練習(2)(解析版) 題型:解答題

先閱讀,再填空解題:
①方程x2-x-6=0的根是x1=3,x2=-2,則x1+x2=1,x1x2=-6;
②方程2x2-7x+3=0的根是x1=,x2=3,則x1+x2=,x1x2=
根據(jù)以上①②你能否猜出:
如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0,且a、b、c為常數(shù),b2-4ac≥0)有兩根x1、x2,那么x1+x2、x1x2與系數(shù)a、b、c有什么關(guān)系?請寫出你的猜想并說明理由.
利用公式法求出方程的根即可.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年四川省成都市中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

填表解題:
方程兩根x1,x2x1+x2=x1x2=
x2+2x+1=0
x2-3x-4=0
x2+4x-7=0
上表你能猜想若x1,x2是方程ax2+bx+c=0(a不等0)的兩根則x1+x2=______,x1x2=______
利用你的猜想解下列問題:
(1)若x1,x2是方程x2-2x-3=0的兩根求,x12+x22和(x1+2)(x2+2)的值.
(2)已知2+是方程x2-4x+c=0的一個根,求方程的另一個根及c的值.

查看答案和解析>>

同步練習冊答案