(2006•鹽城)已知:AB為⊙O的直徑,P為AB弧的中點.
(1)若⊙O′與⊙O外切于點P(見圖甲),AP、BP的延長線分別交⊙O′于點C、D,連接CD,則△PCD是______三角形;
(2)若⊙O′與⊙O相交于點P、Q(見圖乙),連接AQ、BQ并延長分別交⊙O′于點E、F,請選擇下列兩個問題中的一個作答:
問題一:判斷△PEF的形狀,并證明你的結(jié)論;
問題二:判斷線段AE與BF的關(guān)系,并證明你的結(jié)論.
我選擇問題______,結(jié)論:______.

【答案】分析:(1)根據(jù)直徑所對的圓周角是直角以及等弧對等弦進行證明;
(2)根據(jù)直徑所對的圓周角是直角得到∠AQB=90°,根據(jù)對頂角相等得到∠EQF=90°.再根據(jù)90°的圓周角所對的弦是直徑,得到EF是直徑.從而得到∠EPF=90°;根據(jù)(1)中的結(jié)論,連接AP、BP.可證△APE≌△BPF,即證AE=BF.
解答:解:(1)△PCD是等腰直角三角形.
連接OO',則OO'過點P;
∵AB為⊙O的直徑,P為AB弧的中點,
∴∠APB=90°,AP=BP,
∴∠DPC=90°,∠A=45°,
又∵AO=BO,
∴∠APO=45°,
∴∠CPO'=45°,
∵CD是直徑,
∴O'P=O'C,
∴∠C=∠O'PC=45°,
同理可得∠D=45°,
∴∠C=∠D,
∴CP=DP,
∴△PCD是等腰直角三角形;

(2)選擇問題一,△PEF是等腰直角三角形.
證明:連接PA、PB,
∵AB是直徑,
∴∠AQB=∠EQF=90°,
∴EF是⊙O′的直徑,
∴∠EPF=90°,
在△APE和△BPF中:
∵PA=PB,∠PBF=∠PAE,∠APE=90°+∠EPB=∠BPF
∴△APE≌△BPF,
∴PE=PF,
∴△PEF是等腰直角三角形;
選擇問題二,AE=BF.
證明:連接PA、PB,
根據(jù)(1)的結(jié)論,
在△APE和△BPF中:
∵PA=PB,∠PBF=∠PAE,∠APE=90°+∠EPB=∠BPF,
∴△APE≌△BPF,
∴AE=BF.
∵AB、EF分別是直徑,
∴∠AQB=∠EQF.
及AE垂直且相等與BF.
點評:熟練運用圓周角定理的推論和等弧對等弦的性質(zhì),能夠構(gòu)造全等三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

(2006•鹽城)已知:AB為⊙O的直徑,P為AB弧的中點.
(1)若⊙O′與⊙O外切于點P(見圖甲),AP、BP的延長線分別交⊙O′于點C、D,連接CD,則△PCD是
等腰直角
等腰直角
三角形;
(2)若⊙O′與⊙O相交于點P、Q(見圖乙),連接AQ、BQ并延長分別交⊙O′于點E、F,請選擇下列兩個問題中的一個作答:
問題一:判斷△PEF的形狀,并證明你的結(jié)論;
問題二:判斷線段AE與BF的關(guān)系,并證明你的結(jié)論.
我選擇問題
,結(jié)論:
△PEF是等腰直角三角形
△PEF是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•鹽城)已知:如圖,A(0,1)是y軸上一定點,B是x軸上一動點,以AB為邊,在∠OAB的外部作∠BAE=∠OAB,過B作BC⊥AB,交AE于點C.
(1)當B點的橫坐標為時,求線段AC的長;
(2)當點B在x軸上運動時,設(shè)點C的縱、橫坐標分別為y、x,試求y與x的函數(shù)關(guān)系式(當點B運動到O點時,點C也與O點重合);
(3)設(shè)過點P(0,-1)的直線l與(2)中所求函數(shù)的圖象有兩個公共點M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(08)(解析版) 題型:解答題

(2006•鹽城)已知:如圖,A(0,1)是y軸上一定點,B是x軸上一動點,以AB為邊,在∠OAB的外部作∠BAE=∠OAB,過B作BC⊥AB,交AE于點C.
(1)當B點的橫坐標為時,求線段AC的長;
(2)當點B在x軸上運動時,設(shè)點C的縱、橫坐標分別為y、x,試求y與x的函數(shù)關(guān)系式(當點B運動到O點時,點C也與O點重合);
(3)設(shè)過點P(0,-1)的直線l與(2)中所求函數(shù)的圖象有兩個公共點M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷20(回瀾初中 潘曉華)(解析版) 題型:解答題

(2006•鹽城)已知:如圖,A(0,1)是y軸上一定點,B是x軸上一動點,以AB為邊,在∠OAB的外部作∠BAE=∠OAB,過B作BC⊥AB,交AE于點C.
(1)當B點的橫坐標為時,求線段AC的長;
(2)當點B在x軸上運動時,設(shè)點C的縱、橫坐標分別為y、x,試求y與x的函數(shù)關(guān)系式(當點B運動到O點時,點C也與O點重合);
(3)設(shè)過點P(0,-1)的直線l與(2)中所求函數(shù)的圖象有兩個公共點M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省鹽城市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•鹽城)已知:如圖,A(0,1)是y軸上一定點,B是x軸上一動點,以AB為邊,在∠OAB的外部作∠BAE=∠OAB,過B作BC⊥AB,交AE于點C.
(1)當B點的橫坐標為時,求線段AC的長;
(2)當點B在x軸上運動時,設(shè)點C的縱、橫坐標分別為y、x,試求y與x的函數(shù)關(guān)系式(當點B運動到O點時,點C也與O點重合);
(3)設(shè)過點P(0,-1)的直線l與(2)中所求函數(shù)的圖象有兩個公共點M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直線l的解析式.

查看答案和解析>>

同步練習冊答案