觀察下列各式:
1
1×3
=
1
2
(1-
1
3
)
,
1
3×5
=
1
2
(
1
3
-
1
5
)
,
1
5×7
=
1
2
(
1
5
-
1
7
)
,…,根據(jù)觀察計(jì)算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)×(2n+1)
=
 
(n為正整數(shù)).
分析:根據(jù)已知條件,將每一個(gè)分?jǐn)?shù)分解成兩個(gè)負(fù)數(shù),尋找抵消規(guī)律求解.
解答:解:原式=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1

=
n
2n+1
點(diǎn)評(píng):本題考查的是分式的加減法,根據(jù)題意找出規(guī)律是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若n為正整數(shù),觀察下列各式:
1
1×3
=
1
2
(1-
1
3
)
;②
1
3×5
=
1
2
(
1
3
-
1
5
)
;③
1
5×7
=
1
2
(
1
5
-
1
7
)

根據(jù)觀察計(jì)算并填空:
(1)
1
1×3
+
1
3×5
+
1
5×7
=
3
7
3
7

(2)
1
1×3
+
1
3×5
+
1
5×7
+
+
1
(2n-1)(2n+1)
=
n
2n+1
n
2n+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先觀察下列各式:
1
1×4
=
1
3
(1-
1
4
)
1
4×7
=
1
3
(
1
4
-
1
7
)
,
1
7×10
=
1
3
(
1
7
-
1
10
)
,…
1
n(n+3)
=
1
3
(
1
n
-
1
n+3
)

根據(jù)以上的觀察,計(jì)算:
1
1×4
+
1
4×7
+
1
7×10
+
+
1
2005×2008
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(12)觀察下列各式:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,
1
4×5
=
1
4
-
1
5
,…
(1)用含有n(n為正整數(shù))的式子表示上述過(guò)程中的規(guī)律
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1
;
(2)用你發(fā)現(xiàn)的規(guī)律解答下面問(wèn)題:已知a,b是有理數(shù),且|ab-2|與|b-1|互為相反數(shù).
求 
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2011)(b+2011)
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若n為正整數(shù),觀察下列各式:
1
1×3
=
1
2
(1-
1
3
)
,
1
3×3
=
1
2
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)
,…根據(jù)觀察計(jì)算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
19×21
=
10
21
10
21

查看答案和解析>>

同步練習(xí)冊(cè)答案