精英家教網 > 初中數學 > 題目詳情
如圖,在梯形ABCD中,AD∥BC,AD=2,BC=4,點M是AD的中點,△MBC是等邊三角形.動點P、Q分別是在線段BC和MC上運動,且∠MPQ=60°保持不變.
(1)求證:梯形ABCD是等腰梯形;
(2)設PC為x,MQ=y,求y與x的函數關系式,并寫出自變量取值范圍;
(3)在(2)中,當y取最小值時,判斷△PQC的形狀,并說明理由.

【答案】分析:(1)需證△AMB≌△DMC,可得AB=DC,可得梯形ABCD是等腰梯形;
(2)可證△BPM∽△CQP,則PC:BM=CQ:BP,PC=x,MQ=y,BP=4-x,QC=4-y,即可得到BP與CQ的關系,從而轉化成y與x的函數關系式;
(3)先利用二次函數求最值,求出y取最小值時x的值和y的最小值,從而確定P、Q的位置,判斷出△PQC的形狀.
解答:解:(1)證明:∵△MBC是等邊三角形,
∴MB=MC,∠MBC=∠MCB=60°,
∵M是AD中點,
∴AM=MD
∵AD∥BC,
∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.
∴△AMB≌△DMC,(2分)
∴AB=DC,
∴梯形ABCD是等腰梯形.(3分)

(2)在等邊三角形MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°,
∴∠BMP=∠QPC,
∴△BMP∽△CPQ,
∴PC:BM=CQ:BP(5分)
∵PC=x,MQ=y,則BP=4-x,QC=4-y,
=,
∴y=x2-x+4(0<x<4)
(3)△PQC為直角三角形,
由(2)知,當MQ取最小值時,x=PC=2.
∴P是BC的中點,MP⊥BC,而∠MPQ=60°,
∴∠CPQ=30°,
∴∠PQC=90°,
∴△PQC是直角三角形.
點評:本題考查了本題考查平行四邊形、直角三角形和等腰梯形的判定以及相似三角形的判定和性質的應用.還考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng),求函數最小值等知識點.要會利用數形結合的思想把代數和幾何圖形結合起來.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案