在圓內(nèi)接四邊形ABCD中,CD為∠BCA外角的平分線,F為上一點(diǎn),BC=AF,延長(zhǎng)DF與BA的延長(zhǎng)線交于E.
(1)求證△ABD為等腰三角形.
(2)求證AC·AF=DF·FE.
(1)證法一:連CF、BF ∠ACD=∠MCD=∠CDB+∠CBD=∠CFB+∠CFD=∠DFB 而∠ACD=∠DFB=∠DAB又∠ACD=∠DBA ∴∠DAB=∠DBA ∴△ABD為等腰三角形 (4分) 證法二: 由題意有∠MCD=∠ACD=∠DBA,又∠MCD+∠BCD=∠DAB+∠BCD=180°, ∴∠MCD=∠DAB,∴∠DAB=∠DBA即△.ABD為等腰三角形 (4分) (2)由(1)知AD=BD,BC=AF,則弧AFD=弧BCD,弧AF=弧BC, ∴弧CD=弧DF,∴弧CD=弧DF、佟(5分) 又BC=AF,∴∠BDC=∠ADF,∠BDC+∠BDA=∠ADF+∠BDA,即∠CDA=∠BDF, 而∠FAE+∠BAF=∠BDF+∠BAF=180°,∴∠FAE=∠BDF=∠CDA, 同理∠DCA=∠AFE (8分) ∴在△CDA與△FDE中,∠CDA=∠FAE,∠DCA=∠AFE ∴△CDA∽△FAE ∴,即CD·EF=AC·AF,又由①有AC·AF=DF·EF 命題即證 (10分) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BC |
BC |
2 |
BC |
A2A3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2007年湖北省武漢市黃陂一中分配生素質(zhì)測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖(2),在圓的內(nèi)接四邊形ABCD中,∠ABC=120°,則四邊形ABCD的外角∠ADE的度數(shù)是
(A)130° (B)120° (C)110° 。―)100°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com