(2010•眉山)如圖,將第一個圖(圖①)所示的正三角形連接各邊中點進行分割,得到第二個圖(圖②);再將第二個圖中最中間的小正三角形按同樣的方式進行分割,得到第三個圖(圖③);再將第三個圖中最中間的小正三角形按同樣的方式進行分割,…,則得到的第五個圖中,共有    個正三角形.
【答案】分析:分別寫出前三個圖形的正三角形的個數(shù),并觀察出后一個圖形比前一個圖形多分割出四個小的正三角形,依此類推即可寫出第n個圖形的正三角形的個數(shù),進而得出第5個圖中正三角形的個數(shù).
解答:解:第一個圖有1個正三角形,
第二個圖有5個正三角形,5=4+1,
第三個圖有9個正三角形,9=2×4+1,

第n個圖有有4(n-1)+1=4n-3.
故第5個圖形有:4×5-3=17個.
故答案為:17.
點評:本題是一道找規(guī)律的題目,對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•眉山)如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(-3,0)、(0,4),拋物線y=+bx+c經(jīng)過B點,且頂點在直線x=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的前提下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設(shè)點M的橫坐標為t,MN的長度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省眉山市中考數(shù)學試卷(解析版) 題型:解答題

(2010•眉山)如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(-3,0)、(0,4),拋物線y=+bx+c經(jīng)過B點,且頂點在直線x=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的前提下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設(shè)點M的橫坐標為t,MN的長度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2010•眉山)如圖,Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)得到的,連接CC′交斜邊于點E,CC′的延長線交BB′于點F.
(1)證明:△ACE∽△FBE;
(2)設(shè)∠ABC=α,∠CAC′=β,試探索α、β滿足什么關(guān)系時,△ACE與△FBE是全等三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:填空題

(2010•眉山)如圖,∠A是⊙O的圓周角,∠A=40°,則∠OBC的度數(shù)為    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(09)(解析版) 題型:解答題

(2010•眉山)如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.

查看答案和解析>>

同步練習冊答案