如圖,已知E、F是?ABCD的邊BA、DC延長線上的點,且AE=CF,線段EF分別交AD、BC于點M、N.
請你在圖中找出一對全等三角形并加以證明.
解:我選擇證明△________≌△________.

EBN    FDM
分析:本題考查的是全等三角形的判定(ASA,SAS),根據(jù)平行四邊形的性質(zhì),得到相等的角和相等的邊,選擇一對三角形證明即可.
解答:解法一:我選擇證明△EBN≌△FDM.
證明:?ABCD中,AB∥CD,
∠B=∠D,AB=CD,
∠E=∠F,
又∵AE=CF,
∴BE=DF,
∴△EBN≌△FDM.
解法二:我選擇證明△EAM≌△FCN.
證明:?ABCD中,AB∥CD,∠DAB=∠BCD,
∴∠E=∠F,EAM=FCN,
又∵AE=CF,
∴△EAM≌△FCN.
點評:這是一道考查三角形全等的識別方法的開放性題目,答案可有多種.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,已知△ABC的周長是34,其中AB=10,AO、BO分別是角平分線,且MN∥BA,分別交AC于N、BC于M,則△CMN的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑是10,弦AB長為16.現(xiàn)要從弦AB和劣弧
AB
組成的弓形上畫出一個面積最大的圓,所畫出的圓的半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,已知:點D是△ABC的邊BC上一動點,且AB=AC,DA=DE,∠BAC=∠ADE=α.
(1)如圖1,當(dāng)α=60°時,∠BCE=
120°
;
(2)如圖2,當(dāng)α=90°時,試判斷∠BCE的度數(shù)是否發(fā)生改變,若變化,請指出其變化范圍;若不變化,請求出其值,并給出證明;
(3)如圖3,當(dāng)α=120°時,則∠BCE=
30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•西藏)如圖,已知E,F(xiàn)是四邊形ABCD的對角線BD上兩點,BF=DE,AF=CE,AF∥CE,
求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC,P是邊AB上一點,連接CP,使△ACP∽△ABC成立的條件是( 。

查看答案和解析>>

同步練習(xí)冊答案