(2013年廣東梅州8分)為建設(shè)環(huán)境優(yōu)美、文明和諧的新農(nóng)村,某村村委會(huì)決定在村道兩旁種植A,B兩種樹木,需要購買這兩種樹苗1000棵.A,B兩種樹苗的相關(guān)信息如表:

 

單價(jià)(元/棵)

成活率

植樹費(fèi)(元/棵)

A

20

90%

5

B

30

95%

5

設(shè)購買A種樹苗x棵,綠化村道的總費(fèi)用為y元,解答下列問題:

(1)寫出y(元)與x(棵)之間的函數(shù)關(guān)系式;

(2)若這批樹苗種植后成活了925棵,則綠化村道的總費(fèi)用需要多少元?

(3)若綠化村道的總費(fèi)用不超過31000元,則最多可購買B種樹苗多少棵?

 

【答案】

解:(1)設(shè)購買A種樹苗x棵,則購買B種樹苗(1000﹣x)棵,由題意,得

y=(20+5)x+(30+5)(1000﹣x)=﹣10x+35000。

(2)由題意,可得0.90x+0.95(1000﹣x)=925,

解得x=500。

當(dāng)x=500時(shí),y=﹣10×500+35000=30000,

∴綠化村道的總費(fèi)用需要30000元。

(3)由(1)知購買A種樹苗x棵,B種樹苗(1000﹣x)棵時(shí),總費(fèi)用y=﹣10x+35000,

由題意,得﹣10x+35000≤31000,

解得x≥400。

所∴以1000﹣x≤600,

∴最多可購買B種樹苗600棵。

【解析】(1)設(shè)購買A種樹苗x棵,則購買B種樹苗(1000﹣x)棵,根據(jù)總費(fèi)用=(購買A種樹苗的費(fèi)用+種植A種樹苗的費(fèi)用)+(購買B種樹苗的費(fèi)用+種植B種樹苗的費(fèi)用),即可求出y(元)與x(棵)之間的函數(shù)關(guān)系式。

(2)根據(jù)這批樹苗種植后成活了925棵,列出關(guān)于x的方程,解方程求出此時(shí)x的值,再代入(1)中的函數(shù)關(guān)系式中即可計(jì)算出總費(fèi)用。

(3)根據(jù)綠化村道的總費(fèi)用不超過31000元,列出關(guān)于x的一元一次不等式,求出x的取值范圍,即可求解!

考點(diǎn):一次函數(shù)、一元一次方程和一元一次不等式的應(yīng)用。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(廣東梅州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年廣東梅州10分)如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.

(1)寫出以A,B,C為頂點(diǎn)的三角形面積;

(2)過點(diǎn)E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),以MN為一邊,拋物線上的任一點(diǎn)P為另一頂點(diǎn)做平行四邊形,當(dāng)平行四邊形的面積為8時(shí),求出點(diǎn)P的坐標(biāo);

(3)過點(diǎn)D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點(diǎn)Q(點(diǎn)Q在第一象限),使得以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似,求線段QD的長(用含m的代數(shù)式表示).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(廣東梅州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年廣東梅州8分)如圖,在四邊形ABFC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB與點(diǎn)E,且CF=AE,

(1)求證:四邊形BECF是菱形;

(2)若四邊形BECF為正方形,求∠A的度數(shù).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(廣東梅州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年廣東梅州8分)如圖,在矩形ABCD中,AB=2DA,以點(diǎn)A為圓心,AB為半徑的圓弧交DC于點(diǎn)E,交AD的延長線于點(diǎn)F,設(shè)DA=2.

(1)求線段EC的長;

(2)求圖中陰影部分的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(廣東梅州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年廣東梅州8分)已知,一次函數(shù)y=x+1的圖象與反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(a,2).

(1)求a的值及反比例函數(shù)的表達(dá)式;

(2)判斷點(diǎn)B是否在該反比例函數(shù)的圖象上,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案