(2013年四川南充8分)某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:

(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),由所給函數(shù)圖象得
,解得。
∴函數(shù)關(guān)系式為y=-x+180。
(2)W=(x-100) y=(x-100)( -x+180) =-x2+280x-18000=-(x-140) 2+1600
當售價定為140元, W最大=1600。
∴售價定為140元/件時,每天最大利潤W=1600元。
(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),根據(jù)所給函數(shù)圖象列出關(guān)于kb的關(guān)系式,求出k、b的值即可。
(2)把每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式化為二次函數(shù)頂點式的形式,由此關(guān)系式即可得出結(jié)論。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若一次函數(shù)y=kx+1(k為常數(shù),k≠0)的圖象經(jīng)過第一、二、三象限,則k的取值范圍是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校家長委員會計劃在九年級畢業(yè)生中實施“讀萬卷書,行萬里路,了解赤峰,熱愛家鄉(xiāng)”主題活動,決定組織部分畢業(yè)生代表走遍赤峰全市12個旗、縣、區(qū)考察我市創(chuàng)建文明城市成果,遠航旅行社對學(xué)生實行九折優(yōu)惠,吉祥旅行社對20人以內(nèi)(含20人)學(xué)生旅行團不優(yōu)惠,超過20人超出的部分每人按八折優(yōu)惠.兩家旅行社報價都是2000元/人.服務(wù)項目、旅行路線相同.請你幫助家長委員會策劃一下怎樣選擇旅行社更省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個大燒杯中裝有一個小燒杯,在小燒杯中放入一個浮子(質(zhì)量非常輕的空心小圓球)后再往小燒杯中注水,水流的速度恒定不變,小燒杯被注滿后水溢出到大燒杯中,浮子始終保持在容器的正中間.用x表示注水時間,用y表示浮子的高度,則用來表示y與x之間關(guān)系的選項是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=﹣2x+m與直線y=2x﹣1的交點在第四象限,則m的取值范圍是
A.m>﹣1B.m<1C.﹣1<m<1D.﹣1≤m≤1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年廣東梅州8分)為建設(shè)環(huán)境優(yōu)美、文明和諧的新農(nóng)村,某村村委會決定在村道兩旁種植A,B兩種樹木,需要購買這兩種樹苗1000棵.A,B兩種樹苗的相關(guān)信息如表:
 
單價(元/棵)
成活率
植樹費(元/棵)
A
20
90%
5
B
30
95%
5
設(shè)購買A種樹苗x棵,綠化村道的總費用為y元,解答下列問題:
(1)寫出y(元)與x(棵)之間的函數(shù)關(guān)系式;
(2)若這批樹苗種植后成活了925棵,則綠化村道的總費用需要多少元?
(3)若綠化村道的總費用不超過31000元,則最多可購買B種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我市某商場有甲、乙兩種商品,甲種每件進價15元,售價20元;乙種每件進價35元,售價45元.
(1)若商家同時購進甲、乙兩種商品100件,設(shè)甲商品購進x件,售完此兩種商品總利潤為y 元.寫出y與x的函數(shù)關(guān)系式.
(2)該商家計劃最多投入3000元用于購進此兩種商品共100件,則至少要購進多少件甲種商品?若售完這些商品,商家可獲得的最大利潤是多少元?
(3)“五•一”期間,商家對甲、乙兩種商品進行表中的優(yōu)惠活動,小王到該商場一次性付款324元購買此類商品,商家可獲得的最小利潤和最大利潤各是多少?
打折前一次性購物總金額
優(yōu)惠措施
不超過400元
售價打九折
超過400元
售價打八折

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,點A的坐標為(0,3),△OAB沿x軸向右平移后得到△O′A′B′,點A的對應(yīng)點在直線上一點,則點B與其對應(yīng)點B′間的距離為
A.B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=-x+b與雙曲線y=-(x<0)交于點A,與x軸交于點B,則OA2-OB2=  

查看答案和解析>>

同步練習(xí)冊答案