如圖,在⊙O中,直徑AB⊥弦CD,垂足為P,OB=5,PB=2,求CD的長.

解:連接OC,
∵⊙O中,直徑AB⊥弦CD,
∴CD=2CP.
在Rt△OPC中,
∵PC2+PO2=OC2,且OP=OB-PB=5-2=3.
∴PC===4,
∴CD=2CP=8.
分析:連接OC,由垂徑定理可知CD=2CP,在Rt△OPC中,根據(jù)勾股定理可求出PC的長,進(jìn)而得出結(jié)論.
點評:本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在⊙O中,直徑AB為10cm,弦AC為6cm,∠ACB的平分線交⊙O于D,則BC=
 
cm,∠ABD=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在⊙O中,直徑CD的長度為10cm,AB是弦,且AB⊥CD于M,OM=3cm,求弦AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,直徑AB與弦CD垂直,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線F精英家教網(wǎng)C與直線AB相交于點G.
(1)證明:直線FC與⊙O相切;
(2)若OB=BG,求證:四邊形OCBD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•百色)如圖,在⊙O中,直徑CD垂直于弦AB,若∠C=25°,則∠ABO的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)如圖,在⊙O中,直徑AB⊥弦CD于點H,E是⊙O上的點,若∠BEC=25°,則∠BAD的度數(shù)為(  )

查看答案和解析>>

同步練習(xí)冊答案