已知二次函數(shù)y=x2-2bx+b2+c的圖象與直線y=1-x只有一個(gè)公共點(diǎn),并且頂點(diǎn)在二次函數(shù)y=ax2(a≠0)的圖象上,求a的取值范圍.

解:∵二次函數(shù)y=x2-2bx+b2+c①的圖象與直線y=1-x②只有一個(gè)公共點(diǎn),
∴由①②組成的方程組只有一組解,把②代入①,整理得,x2+(1-2b)x+b2+c-1=0,
∴△=0,即(1-2b)2-4(b2+c-1)=0,得4b+4c=5③,
又∵二次函數(shù)y=x2-2bx+b2+c的圖象的頂點(diǎn)坐標(biāo)為(b,c),而頂點(diǎn)在二次函數(shù)y=ax2(a≠0)的圖象上,
∴c=ab2④,
由③④得,4ab2+4b-5=0,(a≠0)
∴△≥0,即16+4×4a×5≥0,解得a≥-,
所以a的取值范圍為a≥-,且a≠0.
分析:根據(jù)題意y=x2-2bx+b2+c,y=1-x,組成的方程組只有一組解,消去y得到關(guān)于x的方程:x2+(1-2b)x+b2+c-1=0,并且△=0,即(1-2b)2-4(b2+c-1)=0,得4b+4c=5;又二次函數(shù)y=x2-2bx+b2+c的圖象的頂點(diǎn)坐標(biāo)為(b,c),而頂點(diǎn)在二次函數(shù)y=ax2(a≠0)的圖象上,得到c=ab2,消去c得到關(guān)于b的方程:4ab2+4b-5=0,(a≠0),于是△≥0,即16+4×4a×5≥0,解不等式即可得到a的取值范圍.
點(diǎn)評(píng):本題考查了圖象交點(diǎn)的情況由它們的解析式組成的方程組的解的情況決定,再轉(zhuǎn)化為由一元二次方程根的判別式來(lái)決定.也考查了拋物線頂點(diǎn)坐標(biāo)的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知二次函數(shù)y=x2+mx+m-5,
(1)求證:不論m取何值時(shí),拋物線總與x軸有兩個(gè)交點(diǎn);
(2)求當(dāng)m取何值時(shí),拋物線與x軸兩交點(diǎn)之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=x2+(2a+1)x+a2-1的最小值為0,則a的值是( 。
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=-x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程-x2+2x+m=0的解為( 。
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知二次函數(shù)y1=x2-x-2和一次函數(shù)y2=x+1的兩個(gè)交點(diǎn)分別為A(-1,0),B(3,4),當(dāng)y1>y2時(shí),自變量x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).
(1)試求二次函數(shù)的解析式;
(2)求y的最大值;
(3)寫出當(dāng)y>0時(shí),x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案