精英家教網 > 初中數學 > 題目詳情

如圖,在△ABC中,AD是它的角平分線,∠C=90°,E在AB邊上,以AE為直徑的⊙O交BC于點D,交AC于點F.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,AD的弦心距為1,求AF的長.

(1)證明:連結OD.
∵AD平分∠CAB,
∴∠CAD=∠DAB.
∵OA=OD,
∴∠DAB=∠ADO,
∴∠CAD=∠ADO,
∴AC∥DO,
∴∠ODB=∠C=90°,即OD⊥BC.
又∵OD是⊙O的半徑,
∴BC是圓O的切線;

(2)如圖,過圓心O作OE⊥AD于點E,則OE=1.
∵∠C=90°,∠B=30°,
∴∠CAB=60°.
由(1)知,∠CAD=∠DAB,
∴∠CAD=∠DAB=30°.
在直角△AEO中,AE=OE•cot30°=,則根據垂徑定理知AD=2AE=2
在直角△ACD中,CD=AD=AE=,AC=CD•cot30°=3,
∵CD是⊙O的切線,
∴CD2=CF•AC,則CF=1,
∴AF=AC-CF=2,即AF的長度是2.
分析:(1)如圖,連接OD.欲證明BC是⊙O的切線,只需證得OD⊥BC;
(2)如圖,過圓心O作OE⊥AD于點E,則OE=1.根據垂徑定理求得AD=2AE.通過解直角△ACD求得CD、AC的長度.然后利用切割線定理來求CF=1,則AF=AC-CF=2.
點評:本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案