已知:如圖,點(diǎn)O是∠EPF的平分線上的一點(diǎn),以O(shè)為圓心的圓和角的兩邊分別交于點(diǎn)A,B和C,D.求證:AB=CD.
分析:過(guò)O作OM⊥AB于M,ON⊥CD于N,連接OA、OC,根據(jù)角平分線性質(zhì)得出ON=OM,根據(jù)勾股定理求出AM=CN,根據(jù)垂徑定理得出AB=2AM,CD=2CN,即可得出答案.
解答:
解:過(guò)O作OM⊥AB于M,ON⊥CD于N,連接OA、OC,
則∠OMA=∠ONC=90°,
∵點(diǎn)O是∠EPF的平分線上,
∴OM=ON,
在Rt△AMO和RtONC中,由勾股定理得:AM2=OA2-OM2,CN2=OC2-ON2,
∵OC=OA,
∴AM=CN,
∵OM、ON過(guò)O,OM⊥AB,ON⊥CD,
∴AB=2AM,CD=2CN,
∴AB=CD.
點(diǎn)評(píng):本題考查了垂徑定理,勾股定理,角平分線性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)P是平行四邊形ABCD的邊DC上一點(diǎn),且AP和BP分別平分∠DAB和∠C精英家教網(wǎng)BA.
(1)求證:AP⊥PB;
(2)如果AD=5,AP=8,求△APB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖中作OE⊥OD交AC于E,連接DE.
問(wèn)題:(1)觀察并猜測(cè),無(wú)論∠DOE繞著點(diǎn)O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫(xiě)出答案)
 

(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說(shuō)明:如果經(jīng)過(guò)思考分析,沒(méi)有找到解決(2)中的問(wèn)題的方法,請(qǐng)直接驗(yàn)證(1)中猜測(cè)的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、已知:如圖,點(diǎn)P是正方形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn)(A、C除外),作PE⊥AB于點(diǎn)E,作PF⊥BC于點(diǎn)F,設(shè)正方形ABCD的邊長(zhǎng)為x,矩形PEBF的周長(zhǎng)為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)O是四邊形BCED外接圓的圓心,點(diǎn)O在BC上,點(diǎn)A在CB的延長(zhǎng)線上,且∠AD精英家教網(wǎng)B=∠DEB,EF⊥BC于點(diǎn)F,交⊙O于點(diǎn)M,EM=2
5

(1)求證:AD是⊙O的切線;
(2)若弧BM上有一動(dòng)點(diǎn)P,且sin∠CPM=
2
3
,求⊙O直徑的長(zhǎng);
(3)在(2)的條件下,如果DE=
14
,求tan∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知:如圖,點(diǎn)D是△ABC的邊AC上的一點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥BC,E、F為垂足,再過(guò)點(diǎn)D作DG∥AB,交BC于點(diǎn)G,且DE=DF.
(1)求證:DG=BG;
(2)求證:BD垂直平分EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案