【題目】某籃球隊運動員進行3分球投籃成績測試,每人每天投3分球10次,對甲、乙兩名隊員在5天中進球的個數(shù)統(tǒng)計如果如下:隊員每人每天進球數(shù)(個)經(jīng)過計算,甲進球的平均數(shù)為x=8和方差S2=3.2.

1)求乙進球的平均數(shù)x和方差S2;

2)現(xiàn)在需要根據(jù)以上數(shù)據(jù),從甲、乙二人中選出一人去參加3分球投籃大賽,你認為應(yīng)該選哪名隊員?說說你的理由?

【答案】1x=8,S2=0.8;(2)乙成績穩(wěn),選乙合適,見解析.

【解析】

1)根據(jù)平均數(shù)、方差的計算公式計算即可;

2)根據(jù)方差越大,波動越大,成績越不穩(wěn)定;方差越小,波動越小,成績越穩(wěn)定進行解答.

1x=(7+9+8+9+7)÷5=8

S2=[(7-8)2+(9-8)2+…+(9-8)2]÷5=0.8.

2)∵S2=3.2,S2=0.8

S2S2,

∴乙的波動小,

∴應(yīng)選乙去參加3分球投籃大賽.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一堂數(shù)學實踐課上,趙老師給出了下列問題:

提出問題

1)如圖1,在△ABC中,EBC的中點,PAE的中點,就稱CP是△ABC的“雙中線”,∠ACB900,AC3,AB5.則CP=___;

探究規(guī)律

2)在圖2中,E是正方形ABCD一邊上的中點,PBE上的中點,則稱AP是正方形ABCD的“雙中線”,若AB4.則AP的長為_____;

3)在圖3中,AP是矩形ABCD的“雙中線”, 若AB4BC6,請仿照(2)中的方法求出AP的長,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形ABCD中,ADBC,∠DBC=45°,翻折梯形ABCD,使點B重合于點D,折痕分別交邊ABBC于點F、E,若AD=2BC=8.(1)BE的長為_________. (2)CDE的正切值為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知Rt△ABC,∠ABC=90°,頂點A在第一象限,B,C在x軸的正半軸上(C在B的右側(cè)),BC=2,AB=2,將△ABC沿AC翻折得△ADC,點A和點D都在反比例函數(shù)y=的圖象上,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動點P從點A出發(fā),沿AB方向以1cm/s的速度向點B運動,動點Q從點B同時出發(fā),沿BA方向以1cm/s的速度向點A運動.當點P到達點B時,PQ兩點同時停止運動,以AP為一邊向上作正方形APDE,過點QQF∥BC,交AC于點F.設(shè)點P的運動時間為ts,正方形和梯形重合部分的面積為Scm2

1)當t= _________ s時,點P與點Q重合;

2)當t= _________ s時,點DQF上;

3)當點PQB兩點之間(不包括Q,B兩點)時,求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2、圖3是某公共汽車雙開門的俯視示意圖,ME,EF,FN是門軸的滑動軌道,,兩門AB,CD的門軸A,B,C,D都在滑動軌道上,兩門關(guān)閉時圖2,A,D分別在E,F處,門縫忽略不計(即B,C重合);兩門同時開啟,A,D分別沿,的方向勻速滑動,帶動B,C滑動;B到達E時,C恰好到達F,此時兩門完全開啟.已知.(1)如圖3,當時,______cm.(2)在(1)的基礎(chǔ)上,當AM方向繼續(xù)滑動15cm時,四邊形ABCD的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A0a),Bba),且a,b滿足(a32+|b6|0,現(xiàn)同時將點A,B分別向下平移3個單位,再向左平移2個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BDAB

1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;

2)在y軸上是否存在一點M,連接MC,MD,使SMCDS四邊形ABCD?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;

3)點P是直線BD上的一個動點,連接PAPO,當點PBD上移動時(不與B,D重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長都為1的小正方形組成的網(wǎng)格中,點均為格點.

(Ⅰ)線段的長度等于______;

(Ⅱ)若為線段上一點,且滿足,請你借助無刻度直尺在給定的網(wǎng)格中面出滿足條件的線段,并簡要說明你是怎么畫出點______________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點都在格點上。

(Ⅰ)AC的長是_____________

(Ⅱ)將四邊形折疊,使點C與點4重合,折痕EFBC于點E,交AD于點F,點D的對應(yīng)點為Q,得五邊形.請用無刻度的直尺在網(wǎng)格中畫出折疊后的五邊形,并簡要說明點的位置是如何找到的____________________.

查看答案和解析>>

同步練習冊答案