我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊長(zhǎng)分別為a、b,試求:(a+b)2 的值.

解:根據(jù)勾股定理可得a2+b2=13,
四個(gè)直角三角形的面積是:ab×4=13-1=12,即:2ab=12
則(a+b)2=a2+2ab+b2=13+12=25.
分析:根據(jù)勾股定理可以求得a2+b2等于大正方形的面積,然后求四個(gè)直角三角形的面積,即可得到ab的值,然后根據(jù)(a+b)2=a2+2ab+b2即可求解.
點(diǎn)評(píng):本題考查勾股定理,以及完全平方式,正確根據(jù)圖形的關(guān)系求得a2+b2和ab的值是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊分別為a、b,那么(a+b)2的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1是2002年8月在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),它取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖》由四個(gè)全等的直角三角形和一個(gè)小正方形的拼成的大正方形.
(1)如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短邊為a,較長(zhǎng)邊為b,那么(a+b)2的值是
 
;
(2)(2009年貴州省安順市)若AC=6,BC=5,將四個(gè)直角三角形中邊長(zhǎng)為6的直角邊分別向外延長(zhǎng)一倍,得到如圖2所示的“數(shù)學(xué)風(fēng)車”,則這個(gè)風(fēng)車的外圍周長(zhǎng)是
 

精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是2002年8月在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),它取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個(gè)全等的直角三角形和一個(gè)小正方形的拼成的大正方形,如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短邊為a,較長(zhǎng)邊為b,那么(a+b)2的值是
25
25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊長(zhǎng)分別為a、b,試求:(a+b)2 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)古代數(shù)學(xué)家趙爽的“勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成一個(gè)大正方形(如圖所示).如果大正方形的面積是49,小正方形的面積4,直角三角形的兩直角邊長(zhǎng)分別為a,b,那么下列結(jié)論正確的有( 。﹤(gè).
(1)b-a=2,(2)a2+b2=49,(3)4+2ab=49,(4)a+b=
94

查看答案和解析>>

同步練習(xí)冊(cè)答案