若拋物線y=ax2+bx+c經(jīng)過點(0,―3),(2,―3)且與x軸的一個交點坐標是(―2,0),則與x軸的另一個交點坐標是    
(4,0)

試題分析:先根據(jù)拋物線y=ax2+bx+c經(jīng)過點(0,―3),(2,―3)可得拋物線的對稱軸為x=1,再根據(jù)拋物線的對稱性即可求得結(jié)果.
∵拋物線y=ax2+bx+c經(jīng)過點(0,―3),(2,―3)
∴拋物線的對稱軸為x=1
∵拋物線與x軸的一個交點坐標是(―2,0)
∴拋物線與x軸的另一個交點坐標是(4,0).
點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握拋物線的對稱性,即可完成.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖像關(guān)于對稱,則的最小值是         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線向右平移一個單位,所得的拋物線的解析式為(    ).
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,頂點為P(4,-4)的二次函數(shù)圖象經(jīng)過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關(guān)于點P對稱,連接AN、ON.

(1)求該二次函數(shù)的關(guān)系式;
(2)若點A的坐標是(6,-3),求△ANO的面積;
(3)當點A在對稱軸l右側(cè)的二次函數(shù)圖象上運動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線的圖象經(jīng)過原點,且開口向上. 確定m的值;
求此拋物線的頂點坐標;
當x取什么值時,y隨x的增大而增大?
當x取什么值時,y<0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象以A(-1,4)為頂點,且過點B(2,0)
(1)求該函數(shù)的關(guān)系式;
(2)若將該函數(shù)圖象以頂點為中心旋轉(zhuǎn),求旋轉(zhuǎn)后拋物線的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

國內(nèi)某企業(yè)生產(chǎn)一種隔熱瓦(其厚度忽略不計),形狀近似為正方形,邊長x(cm)在5~25之間(包括5和25),每片隔熱瓦的成本價(元)與它的面積(cm2)成正比例.出廠價P(元)與它的邊長x(cm)滿足一次函數(shù),圖象如圖所示.

(1)已知出廠一張邊長為15cm的隔熱瓦,獲得的利潤是55元(利潤=出廠價-成本價).
①求每片的隔熱瓦利潤Q(元)與邊長x(cm)之間滿足的函數(shù)關(guān)系式;
②當邊長為多少時,出廠的隔熱瓦能獲得最大利潤?最大利潤是多少?
(2)在(1)的基礎(chǔ)上,如果廠家繼續(xù)擴大產(chǎn)品規(guī)模,從5cm~25cm擴大到5cm~60cm.由于20cm~40cm的隔熱瓦屬于國家科技項目,國家對這部分產(chǎn)品進行貼補.每片隔熱瓦貼補W(元)與它的邊長x(cm)滿足:.在推廣20cm~40cm的隔熱瓦時,廠家進行市場營銷,這種規(guī)格的隔熱瓦廣告費為每片10元.要使每片隔熱瓦的利潤不低于60.4元,求5cm~60cm的隔熱瓦邊長x的取值范圍(x取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

畫出下列二次函數(shù)的圖象,并寫出頂點的坐標:
(1)                   (2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

.如圖,半圓D的直徑AB=4,與半圓O內(nèi)切的動圓O1與AB切于點M,設(shè)⊙O1的半徑為y,AM=x,則y關(guān)于x的函數(shù)關(guān)系式是       (    )
A.y=-x2+xB.y=-x2+xC.y=-x2-xD.y=x2-x

查看答案和解析>>

同步練習(xí)冊答案