有一張矩形紙片ABCD,按下面步驟進行折疊:
第一步:如圖①,將矩形紙片ABCD折疊,使點B、D重合,點C落在點處,得折痕EF;
第二步:如圖②,將五邊形折疊,使AE、重合,得折痕DG,再打開;
第三步:如圖③,進一步折疊,使AE、均落在DG上,點A、落在點處,點E、F落在點處,得折痕MN、QP.這樣,就可以折出一個五邊形DMNPQ.

(Ⅰ)請寫出圖①中一組相等的線段                (寫出一組即可);
(Ⅱ)若這樣折出的五邊形DMNPQ(如圖③)恰好是一個正五邊形,當AB=a,AD=b,DM=m時,有下列結(jié)論:
;         ②;
;           ④.
其中,正確結(jié)論的序號是             (把你認為正確結(jié)論的序號都填上).

(Ⅰ)(答案不惟一,也可以是等);(Ⅱ)①②③

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有兩個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為

                                                        (  )

                

A.1                 B.2            C.3                D.4

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省無錫市北塘區(qū)九年級中考二模數(shù)學試卷(帶解析) 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點,過點D作DE//BC交AC于點E,分別過點D、E作DF⊥BC,EG⊥BC,垂足分別為點F、點G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內(nèi)或者其邊上,且互不重合,此時我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實驗操作:當AD=4時,①若∠A=90°,AB=AC,請在圖2中畫出“重疊三角形”,= ; 
②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     
(2)實驗探究:若△ABC為等邊三角形(如圖5),設AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省無錫市北塘區(qū)九年級中考二模數(shù)學試卷(解析版) 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點,過點D作DE//BC交AC于點E,分別過點D、E作DF⊥BC,EG⊥BC,垂足分別為點F、點G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內(nèi)或者其邊上,且互不重合,此時我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實驗操作:當AD=4時,①若∠A=90°,AB=AC,請在圖2中畫出“重疊三角形”,= ; 

②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     

(2)實驗探究:若△ABC為等邊三角形(如圖5),設AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(浙江杭州卷)數(shù)學 題型:選擇題

(2011•濱州)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為( 。

       A、1             B、2

       C、3              D、4

 

查看答案和解析>>

同步練習冊答案