已知菱形ABCD的對角線分別為12cm、8cm,則它的面積為
48
48
cm2
分析:根據(jù)菱形的對角線的長度即可直接計算菱形ABCD的面積.
解答:解:∵菱形的對角線長的長度分別為8cm、12cm,
∴菱形ABCD的面積S=
1
2
BD•AC=
1
2
×12×8=48cm2
故答案為:48.
點評:本題考查了菱形對角線互相平分的性質(zhì),本題中菱形ABCD的面積等于對角線乘積的一半是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD的邊長為2,∠DAB=60°,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.連接BD.
(1)圖中有幾對三角三全等?試選取一對全等的三角形給予證明;
(2)判斷△BEF的形狀,并說明理由.
(3)當△BEF的面積取得最小值時,試判斷此時EF與BD的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖(1)菱形ABCD的邊長為4,∠ADC=120°,如圖(2),將菱形沿著AC剪開,如圖(3),將△ABC經(jīng)過旋轉(zhuǎn)后與△ACD疊放在一起,得到四邊形AA′CD,AC與A′D相交于點E,連接AA′.
(1)填空:在圖(1)中,AC=
4
3
4
3
.BD=
4
4
.在圖(3)中,四邊形AA′CD是
等腰
等腰
梯形;
(2)請寫出圖(3)中三對相似三角形(不含全等三角形),并選擇其中的一對加以證明;
(3)求AD:DE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知菱形ABCD的邊長為2,∠DAB=60°,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.連接BD.
(1)圖中有幾對三角三全等?試選取一對全等的三角形給予證明;
(2)判斷△BEF的形狀,并說明理由.
(3)當△BEF的面積取得最小值時,試判斷此時EF與BD的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

如圖,已知菱形ABCD的邊長為2,∠DAB=60°,E、F分別是AD、CD上的兩個動點,且滿足AE+CF=2.連接BD.
(1)圖中有幾對三角三全等?試選取一對全等的三角形給予證明;
(2)判斷△BEF的形狀,并說明理由.
(3)當△BEF的面積取得最小值時,試判斷此時EF與BD的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省同步題 題型:單選題

已知E為菱形ABCD的DC延長線上的一點,CE=CD=2cm,AE=6 cm,且F恰好為AE的中點,則下圖中的相似三角形有
[     ]
A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

同步練習(xí)冊答案