【題目】在中,,,,過(guò)點(diǎn)作直線,將繞點(diǎn)順時(shí)針得到(點(diǎn),的對(duì)應(yīng)點(diǎn)分別為,),射線,分別交直線于點(diǎn),.
(1)如圖1,當(dāng)與重合時(shí),求的度數(shù);
(2)如圖2,設(shè)與的交點(diǎn)為,當(dāng)為的中點(diǎn)時(shí),求線段的長(zhǎng);
(3)在旋轉(zhuǎn)過(guò)程時(shí),當(dāng)點(diǎn)分別在,的延長(zhǎng)線上時(shí),試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)60°;(2);(3)
【解析】(1)由旋轉(zhuǎn)可得:AC=A'C=2,進(jìn)而得到BC=,依據(jù)∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;
(2)根據(jù)M為A'B'的中點(diǎn),即可得出∠A=∠A'CM,進(jìn)而得到PB=BC=,依據(jù)tan∠Q=tan∠A=,即可得到BQ=BC×=2,進(jìn)而得出PQ=PB+BQ=;
(3)依據(jù)S四邊形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,即可得到S四邊形PA'B′Q最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,得到S△PCQ的最小值=3,S四邊形PA'B′Q=3-.
(1)由旋轉(zhuǎn)可得:AC=A'C=2,
∵∠ACB=90°,AB=,AC=2,
∴BC=,
∵∠ACB=90°,m∥AC,
∴∠A'BC=90°,
∴cos∠A'CB=,
∴∠A'CB=30°,
∴∠ACA'=60°;
(2)∵M為A'B'的中點(diǎn),
∴∠A'CM=∠MA'C,
由旋轉(zhuǎn)可得,∠MA'C=∠A,
∴∠A=∠A'CM,
∴tan∠PCB=tan∠A=,
∴PB=BC=,
∵tan∠Q=tan∠A=,
∴BQ=BC×=2,
∴PQ=PB+BQ=;
(3)∵S四邊形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,
∴S四邊形PA'B′Q最小,即S△PCQ最小,
∴S△PCQ=PQ×BC=PQ,
取PQ的中點(diǎn)G,則∠PCQ=90°,
∴CG=PQ,即PQ=2CG,
當(dāng)CG最小時(shí),PQ最小,
∴CG⊥PQ,即CG與CB重合時(shí),CG最小,
∴CGmin=,PQmin=2,
∴S△PCQ的最小值=3,S四邊形PA'B′Q=3-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,P1、P2是反比例函數(shù)y=(k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點(diǎn)P1、P2為直角頂點(diǎn).
(1)直接寫出反比例函數(shù)的解析式.
(2)①求P2的坐標(biāo).
②根據(jù)圖象直接寫出在第一象限內(nèi),當(dāng)x滿足什么條件時(shí),經(jīng)過(guò)點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y=的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某同學(xué)在大樓AD的觀光電梯中的E點(diǎn)測(cè)得大樓BC樓底C點(diǎn)的俯角為45°,此時(shí)該同學(xué)距地面高度AE為20米,電梯再上升5米到達(dá)D點(diǎn),此時(shí)測(cè)得大樓BC樓頂B點(diǎn)的仰角為37°,求大樓的高度BC.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 三邊的中線 AD,BE,CF 相交于點(diǎn) G,若 S△ABC=15,則圖中陰影部分面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,在邊上,在邊上,且,過(guò)點(diǎn)作,交于點(diǎn),若,,則的長(zhǎng)為( )
A. 10B. 11C. 12D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計(jì)算這10位居民一周內(nèi)使用共享單車的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,中,,點(diǎn)為邊上一點(diǎn),于點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),的延長(zhǎng)線交于點(diǎn),≌.
(1)求證:;
(2)求的大;
(3)如圖②,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),求證:四邊形為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列各題.
(1)探究:如圖,,試說(shuō)明.
(2)拓展:如圖,,與交于點(diǎn),與交于點(diǎn).若,,利用探究結(jié)論求的度數(shù).
(3)應(yīng)用:如圖,,點(diǎn)在上,點(diǎn)在上,點(diǎn)、在與之間,于點(diǎn).若,,則的大小為______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知點(diǎn)C周圍200 m范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600 m到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.
(1)MN是否穿過(guò)原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com