【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),與y軸相交于(0,),點(diǎn)A坐標(biāo)為(﹣1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達(dá)式.
(2)點(diǎn)F為線段AC上一動(dòng)點(diǎn),過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當(dāng)四邊形OEFG為正方形時(shí),求出F點(diǎn)的坐標(biāo).
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x2+;(2)(1,1);(3)當(dāng)△DMN是等腰三角形時(shí),t的值為,3﹣或1.
【解析】
試題分析:(1)易得拋物線的頂點(diǎn)為(0,),然后只需運(yùn)用待定系數(shù)法,就可求出拋物線的函數(shù)關(guān)系表達(dá)式;
(2)①當(dāng)點(diǎn)F在第一象限時(shí),如圖1,可求出點(diǎn)C的坐標(biāo),直線AC的解析式,設(shè)正方形OEFG的邊長(zhǎng)為p,則F(p,p),代入直線AC的解析式,就可求出點(diǎn)F的坐標(biāo);②當(dāng)點(diǎn)F在第二象限時(shí),同理可求出點(diǎn)F的坐標(biāo),此時(shí)點(diǎn)F不在線段AC上,故舍去;
(3)過點(diǎn)M作MH⊥DN于H,如圖2,由題可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三種情況(①DN=DM,②ND=NM,③MN=MD)討論就可解決問題.
試題解析:(1)∵點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),
∴拋物線的對(duì)稱軸為y軸,
∴拋物線的頂點(diǎn)為(0,),
故拋物線的解析式可設(shè)為y=ax2+.
∵A(﹣1,2)在拋物線y=ax2+上,
∴a+=2,
解得a=﹣,
∴拋物線的函數(shù)關(guān)系表達(dá)式為y=﹣x2+;
(2)①當(dāng)點(diǎn)F在第一象限時(shí),如圖1,
令y=0得,﹣x2+=0,
解得:x1=3,x2=﹣3,
∴點(diǎn)C的坐標(biāo)為(3,0).
設(shè)直線AC的解析式為y=mx+n,
則有,
解得,
∴直線AC的解析式為y=﹣x+.
設(shè)正方形OEFG的邊長(zhǎng)為p,則F(p,p).
∵點(diǎn)F(p,p)在直線y=﹣x+上,
∴﹣p+=p,
解得p=1,
∴點(diǎn)F的坐標(biāo)為(1,1).
②當(dāng)點(diǎn)F在第二象限時(shí),
同理可得:點(diǎn)F的坐標(biāo)為(﹣3,3),
此時(shí)點(diǎn)F不在線段AC上,故舍去.
綜上所述:點(diǎn)F的坐標(biāo)為(1,1);
(3)過點(diǎn)M作MH⊥DN于H,如圖2,
則OD=t,OE=t+1.
∵點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),∴0≤t≤2.
當(dāng)x=t時(shí),y=﹣t+,則N(t,﹣t+),DN=﹣t+.
當(dāng)x=t+1時(shí),y=﹣(t+1)+=﹣t+1,則M(t+1,﹣t+1),ME=﹣t+1.
在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.
在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,
∴MN2=12+()2=.
①當(dāng)DN=DM時(shí),
(﹣t+)2=t2﹣t+2,
解得t=;
②當(dāng)ND=NM時(shí),
﹣t+=,
解得t=3﹣;
③當(dāng)MN=MD時(shí),
=t2﹣t+2,
解得t1=1,t2=3.
∵0≤t≤2,∴t=1.
綜上所述:當(dāng)△DMN是等腰三角形時(shí),t的值為,3﹣或1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A.a2·a3=a5B.(a2)3=a5C.a10÷a2=a5D.2a5-a5=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中只是軸對(duì)稱圖形,而不是中心對(duì)稱圖形的是( ).
A. 平行四邊形 B. 矩形 C. 菱形 D. 等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題6分)下列是用火柴棒拼出的一列圖形.
仔細(xì)觀察,找出規(guī)律,解答下列各題:
(1)第4個(gè)圖中共有_____ 根火柴,第6個(gè)圖中共有_____ 根火柴;
(2)第n個(gè)圖形中共有_____ 根火柴(用含n的式子表示);
(3)請(qǐng)計(jì)算第2013個(gè)圖形中共有多少根火柴?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的方格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣1,2).
(1)把△ABC向下平移8個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出與△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2;
(3)若點(diǎn)P(a,b)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對(duì)應(yīng)的點(diǎn),寫出P2的坐標(biāo)為 ;
(4)試在y軸上找一點(diǎn)Q(在圖中標(biāo)出來(lái)),使得點(diǎn)Q到B2、C2兩點(diǎn)的距離之和最小,并求出QB2+QC2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自主服裝品牌設(shè)計(jì)出了一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元.在推廣服裝品牌初期開展促銷活動(dòng),可以同時(shí)向客戶提供兩種優(yōu)惠方案:
方案①買一套西裝送一條領(lǐng)帶;
方案②西裝和領(lǐng)帶都按定價(jià)的90%付款.
現(xiàn)某客戶要到該服裝品牌購(gòu)買西裝20套,領(lǐng)帶條(超過20).
(1)若該客戶按方案①購(gòu)買,需付款_ _____元(用含的式子表示);
若該客戶按方案②購(gòu)買,需付款__ ____元(用含的式子表示);
(2)若=30,通過計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算?
(3)當(dāng)=30時(shí),你能給出一種更為省錢的購(gòu)買方案嗎?試寫出你的購(gòu)買方法,并計(jì)算出所需的錢數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,分別在三角形、四邊形、五邊形的廣場(chǎng)各角修建半徑為R的扇形草坪(圖中陰影部分).
(1)圖①中草坪的面積為__________;
(2)圖②中草坪的面積為__________;
(3)圖③中草坪的面積為__________;
(4)如果多邊形的邊數(shù)為n,其余條件不變,那么,你認(rèn)為草坪的面積為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com