菱形ABCD中,若周長是20cm,對角線AC=6cm,則對角線BD=    cm.
【答案】分析:先根據(jù)周長求出菱形的邊長,再根據(jù)菱形的對角線互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.
解答:解:如圖,∵菱形ABCD的周長是20cm,對角線AC=6cm,
∴AB=20÷4=5cm,AO=AC=3cm,
又∵AC⊥BD,
∴BO===4cm,
∴BD=2BO=8cm.
故答案為:8.
點評:本題主要考查了菱形的對角線互相垂直平分的性質(zhì),勾股定理的應(yīng)用,比較簡單,熟記性質(zhì)是解題的關(guān)鍵,作出圖形更形象直觀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形.
(2)如圖1,求AF的長.
(3)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,點P的速度為每秒1cm,設(shè)運動時間為t秒.
①問在運動的過程中,以A、P、C、Q四點為頂點的四邊形有可能是矩形嗎?若有可能,請求出運動時間t和點Q的速度;若不可能,請說明理由.
②若點Q的速度為每秒0.8cm,當(dāng)A、P、C、Q四點為頂點的四邊形是平行四邊形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:矩形ABCD中AD>AB,O是對角線的交點,過O任作一直線分別交BC、AD于點M、N(如圖①).
(1)求證:BM=DN;
(2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
(3)在(2)的條件下,如圖③,若AB=4cm,BC=8cm,動點P、Q分別從A、C兩點同時出發(fā),沿△AMB和△CDN各邊勻速運動一周.即點P自A→M→B→A停止,點Q自C→D→N→C停止.在運動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省鹽城市阜寧縣東溝中學(xué)九年級下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué) 題型:解答題

(2011•福州)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.

(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,

①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

 

查看答案和解析>>

同步練習(xí)冊答案