【題目】如圖,在中,,的平分線,經(jīng)過兩點(diǎn)的圓的圓心恰好落在上,分別與交于點(diǎn).若.則圖中陰影部分的面積為(

A.B.C.D.

【答案】B

【解析】

連接ODOF.首先證明ODAC,推出S=S扇形OFA,再證明AOF是等邊三角形即可解決問題.

連接OD,OF

AD是∠BAC的平分線,

∴∠DAB=DAC,

OD=OA,

∴∠ODA=OAD,

∴∠ODA=DAC,

ODAC

∴∠ODB=C=90°

SAFD=SOFA,

S=S扇形OFA

OD=OA=2,AB=6

OB=4,

OB=2OD

∴∠B=30°,

∴∠A=60°

OF=OA,

∴△AOF是等邊三角形,

∴∠AOF=60°

S=S扇形OFA

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的中點(diǎn),點(diǎn)上(點(diǎn)不與重合),過點(diǎn)的直線交,交射線于點(diǎn),設(shè),

1)如圖1,若為等邊三角形,點(diǎn)重合,,求證:

2)如圖2,若點(diǎn)重合,求證:;

3)如圖3,若,,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩家草莓采摘園,草莓的銷售價格相間,在生長旺季,兩家均排出優(yōu)惠方案.甲園的優(yōu)惠方案是:采摘的草莓不超過時,按原價銷售;若超過超過部分折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園需購買元門票.采摘的草莓直接按降價出售.已知在甲園、乙園采摘草莓時,所需費(fèi)用相同.

在乙采摘園所需費(fèi)用( )與草梅采摘量(千克)滿足一次函數(shù)關(guān)系,如下表:

數(shù)量/千克

···

費(fèi)用

···

1)求的函數(shù)關(guān)系式(不必寫出的范圍);

2)求兩個采摘園的草莓在生長旺季前的銷售價格.并求在甲采摘園所需費(fèi)用()與草莓采摘量(千克)的函數(shù)關(guān)系式

3)若嘉琪準(zhǔn)備花費(fèi)元去采摘草莓,去哪個園采摘,可以得到更多數(shù)量的草莓? 說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形中,(其中

1)點(diǎn),分別在邊,上,;

①如圖,若,且點(diǎn)中點(diǎn),求證;

②如圖,若,且,求證:;

2)如圖,當(dāng)時,點(diǎn)的速度從,點(diǎn)的速度從,當(dāng)點(diǎn)時兩點(diǎn)都停止運(yùn)動,則點(diǎn)的運(yùn)動時間為多少時,的面積最小,最小面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子中裝有6張卡片,6張卡片的正面分別標(biāo)有數(shù)字﹣4,﹣3,﹣2,﹣1,6,8,這些卡片除數(shù)字外都相同,將卡片攪勻.

1)從盒子中任意抽取一張卡片,求恰好抽到標(biāo)有偶數(shù)卡片的概率;

2)先從盒子中任意抽取一張卡片,把它上面的數(shù)字作為一個點(diǎn)的橫坐標(biāo),不放回,再從盒子剩余的卡片中任意抽取一張卡片,把它上面的數(shù)字作為這個點(diǎn)的縱坐標(biāo),求抽取的點(diǎn)恰好落在第二象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)任務(wù):

黃金分割

天文學(xué)家開普勒把黃金分割稱為神圣分割,并指出畢達(dá)哥拉斯定理(勾股定理)和黃金分割是幾何中的雙寶,前者好比黃金,后者堪稱珠寶,歷史上最早正式在書中使用“黃金分割”這個名稱的是歐姆,19世紀(jì)以后“黃金分割”的說法逐漸流行起來,黃金分割被廣泛應(yīng)用于建筑等領(lǐng)域.黃金分割指把一條線段分為兩部分,使其中較長部分與線段總長之比等于較短部分與較長部分之比,該比值為.用下面的方法(如圖①)就可以作出已知線段的黃金分割點(diǎn)

①以線段為邊作正方形

②取的中點(diǎn),連接,

③延長,使,

④以線段為邊作正方形,點(diǎn)就是線段的黃金分割點(diǎn).

以下是證明點(diǎn)就是線段的黃金分割點(diǎn)的部分過程:

證明:設(shè)正方形的邊長為1,則,

中點(diǎn),

中,,

,

,

,

任務(wù):

1)補(bǔ)全題中的證明過程;

2)如圖②,點(diǎn)為線段的黃金分割點(diǎn),分別以為邊在線段同側(cè)作正方形和矩形,連接.求證:;

3)如圖③,在正五邊形中,對角線分別交于點(diǎn)求證:點(diǎn)的黃金分割點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:小明為了計算的值 ,采用以下方法:

設(shè)

②-①

1= ;

2 = ;

3)求的和( ,是正整數(shù),請寫出計算過程 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩家草莓采摘園,草莓的銷售價格相間,在生長旺季,兩家均排出優(yōu)惠方案.甲園的優(yōu)惠方案是:采摘的草莓不超過時,按原價銷售;若超過超過部分折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園需購買元門票.采摘的草莓直接按降價出售.已知在甲園、乙園采摘草莓時,所需費(fèi)用相同.

在乙采摘園所需費(fèi)用( )與草梅采摘量(千克)滿足一次函數(shù)關(guān)系,如下表:

數(shù)量/千克

···

費(fèi)用

···

1)求的函數(shù)關(guān)系式(不必寫出的范圍)

2)求兩個采摘園的草莓在生長旺季前的銷售價格.并求在甲采摘園所需費(fèi)用()與草莓采摘量(千克)的函數(shù)關(guān)系式;

3)若嘉琪準(zhǔn)備花費(fèi)元去采摘草莓,去哪個園采摘,可以得到更多數(shù)量的草莓? 說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,創(chuàng)新小組要測量公園內(nèi)一棵樹的高度AB,其中一名小組成員站在距離樹10米的點(diǎn)E處,測得樹頂A的仰角為54°.已知測角儀的架高CE1.8米,則這顆樹的高度為_________米.(結(jié)果保留一位小數(shù).參考數(shù)據(jù):sin54°=0.8090cos54°=0.5878,tan54°=1.3764

查看答案和解析>>

同步練習(xí)冊答案