如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和高BE的交點(diǎn).
求證:DF=CD.

【答案】分析:先證明AD=BD,再證明∠FBD=∠DAC,從而利用ASA證明△BDF≌△ADC,利用全等三角形對(duì)應(yīng)邊相等就可得到結(jié)論.
解答:證明:∵AD⊥BC,
∴∠ADC=∠FDB=90°,
∵∠ABC=45°,
∴∠BAD=45°,
∴AD=BD,
∵BE⊥AC,
∴∠AEF=90°,
∴∠DAC+∠AFE=90°,
∵∠FDB=90°,
∴∠FBD+∠BFD=90°,
又∵∠BFD=∠AFE,
∴∠FBD=∠DAC,
在△BDF和△CDA中:,
∴△BDF≌△ADC,
∴DF=CD.
點(diǎn)評(píng):此題主要考查了全等三角形的判定,關(guān)鍵是找出能使三角形全等的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案