某商場計劃撥款9萬元購進50臺電視機.已知廠家生產(chǎn)三種不同型號的電視機,出廠價分別為:甲種電視機每臺1500元,乙種電視機每臺2100元,丙種電視機每臺2500元.
(1)若商場同時購進其中兩種不同型號的電視機共50臺,用去9萬元,問有多少種不同的進貨方案?并寫出這些方案.
(2)若商場銷售一臺甲種電視機可獲利150元,銷售一臺乙種電視機可獲利200元,銷售一臺丙種電視機可獲利250元.在第(1)小題的幾個方案中,為使銷售時獲得利潤最多,你選擇哪種方案?并說明理由.
解:(1)設(shè)購買電視機甲種x臺,乙種y臺,丙種z臺,由題意得:
①
,
解得:
;
②
,
解得:
(舍去)
③
,
解得:
.
故兩種方案:方案1:甲,乙兩種電視機各25臺.
方案2:購買甲種電視機35臺,乙種電視機15臺;
(2)選擇方案2,理由:
∵商場銷售一臺甲種電視機可獲利150元,銷售一臺乙種電視機可獲利200元,銷售一臺丙種電視機可獲利250元,
∴方案1:25×150+25×200=8750(元),
方案2:35×150+15×250=9000(元),
故選擇方案2.
分析:(1)通過理解題意可知本題存在兩個等量關(guān)系,即“購進其中兩種不同型號的電視機共50臺”和“兩種不同型號的電視機共用去9萬元”,根據(jù)這兩個等量關(guān)系可列出方程組.
(2)根據(jù)(1)中兩種方案,分別求出利潤即可.
點評:此題主要考查了二元一次方程組的應(yīng)用以及最佳方案問題,根據(jù)已知得出總錢數(shù)和總臺數(shù)的方程是解題關(guān)鍵.