如圖,在正方形ABCD中,△APD是正三角形,則∠BPC=      
150°
∵四邊形ABCD為正方形,
∴∠DAB=∠ABC=90°,
∵△APD是正三角形,
∴∠DAP=60°,
∴∠BAP=30°,
∵AP=AD=AB,
∴∠ABP=∠APB=(180°-∠BAP)÷2=150°÷2=75°,
∴∠PBC=∠PCB=∠ABC-∠ABP=90°-75°=15°,
∴∠BPC=180°-∠PBC-∠PCB=180°-15°-15°=150°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將兩張長(zhǎng)方形紙片如圖所示擺放,使其中一張長(zhǎng)方形紙片的一個(gè)頂點(diǎn)恰好落在另一張長(zhǎng)方形紙片的一條邊上,已知∠BEF=30°,則∠CMF=________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)0,在BC上取BE=BO,連結(jié)AE,OE.若∠BOE
=75°,則∠CAE的度數(shù)等于( ▲ ).

A. 30°         B.45°           C.20°         D.15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,正方形的面積為12,是等邊三角形,點(diǎn)在正方形內(nèi),在對(duì)角線上有一點(diǎn), 使的和最小,則這個(gè)最小值為(    )
              
A.B.C.3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)E是平行四邊形ABCD的邊CD上的一點(diǎn),連接AE交BC的延長(zhǎng)線于點(diǎn)F,要使S四邊形ABCE =8S△CEF ,需要添加一個(gè)條件是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,點(diǎn)E是邊AD上一點(diǎn),BC=2AB,AD=BE,那么∠ECD=    ▲    度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD的邊長(zhǎng)為2cm,∠DAB=60°.點(diǎn)P從A點(diǎn)出發(fā),以cm/s的速度,沿AC向C作勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線AB作勻速運(yùn)動(dòng).當(dāng)P運(yùn)動(dòng)到C點(diǎn)時(shí),P、Q都停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)當(dāng)P異于A.C時(shí),請(qǐng)說明PQ∥BC;
(2)以P為圓心、PQ長(zhǎng)為半徑作圓,請(qǐng)問:在整個(gè)運(yùn)動(dòng)過程中,t為怎樣的值時(shí),⊙P與邊BC分別有1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

從一般到特殊是一種重要的數(shù)學(xué)思想,右圖通過類比的方法展現(xiàn)了認(rèn)識(shí)三角形與平行四邊形圖形特征的過程,你認(rèn)為“?”處的圖形名稱是               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形ABCD是邊長(zhǎng)為2的正方形,以對(duì)角線BD為邊作正三角形BDE,過E作DA 的延長(zhǎng)線的垂線EF,垂足為F。

(1)找出圖中與EF相等的線段,并證明你的結(jié)論;
(2)求AF的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案