解:(1)如圖:
;
(2)在△ABC中,∠B=80°,∠C=60°,
∴∠BAC=180°-80°-60°=40°;
(3)∵AE是∠BAC的角平分線,
∴∠BAE=
∠BAC=20°,
∵AD是△ABC的高,
∴∠ADB=90°,
∴在Rt△ABD中,
∴∠BAD=90°-80°=10°,
∴∠DAE=20°-10°=10°.
分析:(1)從A作AD⊥BC于D即可得到高線AD,然后畫射線AE平分∠BAC即可得到角平分線AE;
(2)由于△ABC中,∠B=80°,∠C=60°,利用三角形的內(nèi)角和即可求出∠BAC的度數(shù);
(3)射線根據(jù)角平分線的性質(zhì)可以求出∠BAE的度數(shù),然后在Rt△ABD中利用三角形的內(nèi)角和可以求出∠BAD,利用它們即可求出∠DAE的度數(shù).
點評:此題主要考查了三角形的內(nèi)角和定理,其中利用定理求解是基礎(chǔ)題,準確識別圖形是解題的關(guān)鍵.