已知,如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,若∠B=30°,∠C=50°,求∠DAE的度數(shù).

解:∵∠BAC+∠B+∠C=180°,
而∠B=30°,∠C=50°,
∴∠BAC=180°-30°-50°=100°,
∵AE是△ABC的角平分線,
∴∠EAC=∠BAC=50°
又∵AD為高線,
∴∠ADC=90°,
而∠C=50°,
∴∠DAC=180°-90°-50°=40°,
∴∠DAE=∠EAC-∠DAC=50°-40°=10°.
分析:根據(jù)三角形內(nèi)角和定理得到∠BAC+∠B+∠C=180°,而∠B=30°,∠C=50°,可求得∠BAC=180°-30°-50°=100°,根據(jù)△ABC的角平分線的定義得到∠EAC=∠BAC=50°,而AD為高線,則∠ADC=90°,而∠C=50°,于是∠DAC=180°-90°-50°=40°,然后利用∠DAE=∠EAC-∠DAC計(jì)算即可.
點(diǎn)評:本題考查了三角形內(nèi)角和定理:三角形的內(nèi)角和為180°.也考查了角平分線的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊答案