【題目】如圖,二次函數(shù)y=ax2+bx-3的圖象與x軸相交于A(-1,0),B(3,0)兩點.與y軸相交于點C
(1)求這個二次函數(shù)的解析式.
(2)若P是第四象限內(nèi)這個二次函數(shù)的圖象上任意一點,PH⊥x軸于點H,與BC交于點M,請問:當(dāng)點P的坐標(biāo)為多少時,線段PM的長最大?并求出這個最大值.
【答案】(1);(2)的坐標(biāo)為時,最大值為
【解析】
(1)根據(jù)待定系數(shù)法,即可得到答案;
(2)根據(jù)待定系數(shù)法,先求出直線的函數(shù)解析式,設(shè)的坐標(biāo)為,的坐標(biāo)為,可得PM關(guān)于t的二次函數(shù)解析式,進(jìn)而即可求解.
(1)由題意得:,解得:,
∴這個二次函數(shù)的解析式為:;
(2)當(dāng)時,,
∴為,
∴直線的函數(shù)解析式為:,
∵P是第四象限內(nèi)這個二次函數(shù)的圖象上任意一點,
∴設(shè)的坐標(biāo)為,則的坐標(biāo)為,
∴,
∵且,
∴當(dāng)時,取得最大值,且為,
此時的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖1,則有;若△ABC為銳角三角形時,小明猜想:,理由如下:如圖2,過點A作AD⊥CB于點D,設(shè)CD=x.在Rt△ADC中,,在Rt△ADB中,,∴.
∵a>0,x>0,∴2ax>0,∴,∴當(dāng)△ABC為銳角三角形時.
所以小明的猜想是正確的.
(1)請你猜想,當(dāng)△ABC為鈍角三角形時, 與的大小關(guān)系.
(2)溫馨提示:在圖3中,作BC邊上的高.
(3)證明你猜想的結(jié)論是否正確.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:,記為,它與軸交于點,;將繞點旋轉(zhuǎn)得,交軸于點;將繞點旋轉(zhuǎn)得,交軸于點;…,如此進(jìn)行下去,直至得.
(1)請寫出拋物線的解析式:________;
(2)若在第10段拋物線上,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知,AB=AC=6,BC=10.E是C邊上一動點(E不與點B、C重合),△DEF≌△ABC.其中點A,B的對應(yīng)點分別是點D、E,且點E在運動時,DE邊始終經(jīng)過點A,設(shè)EF與AC相交于點G,當(dāng)△AEG為等腰三角形時,則BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點A的坐標(biāo)為(1,0),那么點B2018的坐標(biāo)為( 。
A. (1,1) B. (0,) C. () D. (﹣1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)已知點F(0,),當(dāng)點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AC為直徑,MA,MB分別切⊙O于點A,B,過點B作BD⊥AC于點E,交⊙O于點D,若BD=MA,則∠AMB的大小為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣11ax+24a交x軸于C,D兩點,交y軸于點B(0,),過拋物線的頂點A作x軸的垂線AE,垂足為點E,作直線BE.
(1)求直線BE的解析式;
(2)點H為第一象限內(nèi)直線AE上的一點,連接CH,取CH的中點K,作射線DK交拋物線于點P,設(shè)線段EH的長為m,點P的橫坐標(biāo)為n,求n與m之間的函數(shù)關(guān)系式.(不要求寫出自變量m的取值范圍);
(3)在(2)的條件下,在線段BE上有一點Q,連接QH,QC,線段QH交線段PD于點F,若∠HFD=2∠FDO,∠HQC=90°∠FDO,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com