如圖:直線AB、CD相交于O,OE⊥OF,∠BOF=2∠BOE,OC平分∠AOE,求:∠DOE的度數(shù).

解:∵OE⊥OF,∠BOF=2∠BOE,
∴∠BOF+∠BOE=3∠BOE=90°,
解得∠BOE=30°,
∴∠BOF=2×30°=60°,
∴∠AOE=180°-∠BOE=150°,
∵OC平分∠AOE,
∴∠AOC=∠AOE=×150°=75°,
∴∠BOD=∠AOC=75°,
∠DOE=∠BOD+∠BOE=75°+30°=105°.
故答案為:105°.
分析:先根據(jù)OE⊥OF,∠BOF=2∠BOE求出∠BOF與∠BOE的度數(shù),從而可以得到∠AOE的度數(shù),再根據(jù)角平分線的定義求出∠AOC,然后根據(jù)對(duì)頂角相等求出∠BOD,與∠BOE相加即可求解.
點(diǎn)評(píng):本題考查了垂線,對(duì)頂角相等的性質(zhì),以及角的計(jì)算,準(zhǔn)確識(shí)圖,結(jié)合圖形先求出∠BOE與∠BOF的度數(shù)是解題的關(guān)鍵,也是突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過點(diǎn)O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請(qǐng)寫出三對(duì):
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請(qǐng)你認(rèn)真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對(duì)頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、EF相交于點(diǎn)O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB,CD相交于O點(diǎn),EO⊥CD,垂足為O點(diǎn),若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案