【題目】如圖在等腰三角形△ABC中,AC=BC,D、E分別為AB、BC上一點,∠CDE=∠A.
(1)如圖①,若BC=BD,求證:CD=DE;
(2)如圖②,過點C作CH⊥DE,垂足為H,若CD=BD,EH=1,求DE﹣BE的值.
【答案】(1)證明見解析(2)2
【解析】試題分析:(1)先根據(jù)條件得出∠ACD=∠BDE,BD=AC,再根據(jù)ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根據(jù)條件得出∠DCB=∠CDE,進而得到CE=DE,再在DE上取點F,使得FD=BE,進而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根據(jù)CH⊥EF,運用三線合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.
試題解析:(1)∵AC=BC,∠CDE=∠A,
∴∠A=∠B=∠CDE,
∴∠ACD=∠BDE,
又∵BC=BD,
∴BD=AC,
在△ADC和△BED中,
,
∴△ADC≌△BED(ASA),
∴CD=DE;
(2)∵CD=BD,
∴∠B=∠DCB,
又∵∠CDE=∠B,
∴∠DCB=∠CDE,
∴CE=DE,
如圖,在DE上取點F,使得FD=BE,
在△CDF和△DBE中,
,
∴△CDF≌△DBE(SAS),
∴CF=DE=CE,
又∵CH⊥EF,
∴FH=HE,
∴DE﹣BE=DE﹣DF=EF=2HE=2.
科目:初中數(shù)學 來源: 題型:
【題目】周老師在一次“探究性學習”課中,設計了如下數(shù)表:
(1)請你分別觀察a,b,c與n之間的關系,并用含自然數(shù)n(n>1)的代數(shù)式表示:
a=__ _____;b=___ ____;c=___ ____;
(2)猜想:以a,b,c為邊長的三角形是否是直角三角形?證明你的猜想.
(3)、顯然,滿足這樣關系的整數(shù)a、b、c我們把它叫做 數(shù),請再寫一組這樣的數(shù) (不同于表格中已出現(xiàn)的數(shù)組)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義符號min{a,b}的含義為:當a≥b時,min{a,b}=b;當a<b時,min{a,b}=a.如:min={1,﹣2}=﹣2,min{﹣1,2}=﹣1.則min{x2﹣1,﹣2}的值是( )
A.x2﹣1
B.2
C.﹣1
D.﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春天來了,小穎要用總長為12米的籬笆圍一個長方形花圃,其一邊靠墻(墻長9米),另外三邊是籬笆,其中BC不超過9米.設垂直于墻的兩邊AB,CD的長均為x米,長方形花圃的面積為y米2 .
(1)用x表示花圃的一邊BC的長,判斷x=1是否符合題意,并說明理由;
(2)求y與x之間的關系式;
根據(jù)關系式補充表格:
x(米) | … | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | … |
y(米2) | … | 13.5 | 16 | 17.5 | 17.5 | 13.5 | … |
觀察表中數(shù)據(jù),寫出y隨x變化的一個特征: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為美化校園環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設通道寬為米.
(1)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;
(2)能否設計出符合題目要求,且長方形花圃的形狀與原長方形空地的形狀相似的花圃?若能,求出此時通道的寬;若不能,則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com