(本題12分) 如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動點(diǎn).

(1)求b,c的值.

(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形, 那么是否存在點(diǎn)P,使四邊形為菱形?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

 

 

(1)

(2)P點(diǎn)的坐標(biāo)為(,

(3)

解析:

解:(1)將B、C兩點(diǎn)的坐標(biāo)代入得     …………2分

解得:               

所以二次函數(shù)的表達(dá)式為:              …………3分

(2)存在點(diǎn)P,使四邊形為菱形.設(shè)P點(diǎn)坐標(biāo)為(x,),交CO于E若四邊形是菱形,則有PC=PO.連結(jié),

則PE⊥CO于E,∴OE=EC==. ………5分

=

解得=,=(不合題意,舍去)

∴P點(diǎn)的坐標(biāo)為(,)    ………………7分

(3)過點(diǎn)P作軸的平行線與BC交于點(diǎn)Q,與OB交于點(diǎn)F,設(shè)P(x,),

易得,直線BC的解析式為

則Q點(diǎn)的坐標(biāo)為(x,x-3).

=   …………10分

當(dāng)時(shí),四邊形ABPC的面積最大

此時(shí)P點(diǎn)的坐標(biāo)為,四邊形ABPC的面積.  …………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點(diǎn)y軸上,,,B點(diǎn)坐標(biāo)為(4,0).點(diǎn)是邊上一點(diǎn),且.點(diǎn)、分別從、同時(shí)出發(fā),以1厘米/秒的速度分別沿、向點(diǎn)運(yùn)動(當(dāng)點(diǎn)F運(yùn)動到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動),EM、CD的延長線交于點(diǎn)P,F(xiàn)PAD于點(diǎn)Q.⊙E半徑為,設(shè)運(yùn)動時(shí)間為秒。

(1)求直線BC的解析式。

(2)當(dāng)為何值時(shí),?

(3)在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點(diǎn)的坐標(biāo)。如果不相切,說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 

(本題12分)如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn), ∠AOB= 110°,

∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。

(1)求證:△OCD是等邊三角形;

(2)當(dāng)=150°時(shí),試判斷△AOD 的形狀,并說明理由;

(3)探究:當(dāng)為多少度時(shí),△AOD是等腰三角形。

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)如圖,正方形ABCD的邊長是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點(diǎn),逆時(shí)針旋轉(zhuǎn)三角尺.

(1)當(dāng)三角尺的一邊經(jīng)過C點(diǎn)時(shí),此時(shí)三角尺的另一邊和AB邊交于點(diǎn),求此時(shí)直線PM的解析式;

(2)繼續(xù)旋轉(zhuǎn)三角尺,三角尺的一邊與x軸交于點(diǎn)G, 三角尺的另一邊與AB交于,PM的延長線與CD的延長線交于點(diǎn)F,若三角形GF的面積為4,求此時(shí)直線PM的解析式;

(3)當(dāng)旋轉(zhuǎn)到三角尺的一邊經(jīng)過點(diǎn)B,另一直角邊的延長線與x軸交于點(diǎn)G,,求此時(shí)三角形GOF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)如圖,拋物線y=ax2bxcx軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)。點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過點(diǎn)F且與y軸平行。直線y=-xm過點(diǎn)C,交y軸于D點(diǎn).
⑴求拋物線的函數(shù)表達(dá)式;
⑵點(diǎn)K為線段AB上一動點(diǎn),過點(diǎn)Kx軸的垂線與直線CD交于點(diǎn)H,與拋物線交于     點(diǎn)G,求線段HG長度的最大值;
⑶在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)AC,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年人教版九年級第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題12分)如圖,已知拋物線y=x2+3與x軸交于點(diǎn)A、B,與直線y=x+b相交于點(diǎn)B、C,直線y=x+b與y軸交于點(diǎn)E.
(1)寫出直線BC的解析式;
(2)求△ABC的面積;
(3)若點(diǎn)M在線段AB上以每秒1個(gè)單位長度的速度從A向B運(yùn)動(不與A、B重合),同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長度的速度從B向C運(yùn)動。設(shè)運(yùn)動時(shí)間為t秒,請寫出△MNB的面積s與t的函數(shù)關(guān)系式,并求出點(diǎn)M運(yùn)動多少時(shí)間時(shí),△MNB的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案